Виды трапеции: Виды трапеций — Трапеция и её виды

Содержание

Что такое трапеция: определение, виды, свойства

В данной публикации мы рассмотрим определение, виды и свойства (касательно диагоналей, углов, средней линии, точки пересечения боковых сторон и т.д.) одной из основных геометрических фигур – трапеции.

Определение трапеции

Трапеция – это четырехугольник, две стороны которого параллельны, а остальные две – нет.

Параллельные стороны называются основаниями трапеции (AD и BC), две другие стороны – боковыми (AB и CD).

Угол при основании трапеции – внутренний угол трапеции, образованный ее основанием и боковой стороной, например, α и β.

Трапеция записывается путем перечисления его вершин, чаще всего, это ABCD. А основаниям обозначаются маленькими латинскими буквами, например, a и b.

Средняя линия трапеции (MN) – отрезок, соединяющий середины ее боковых сторон.

Высота трапеции (h или BK) – это перпендикуляр, проведенный от одного основания к другому.

Виды трапеций

Равнобедренная трапеция

Трапеция, боковые стороны которой равны, называется равнобедренной (или равнобокой).

AB = CD

Прямоугольная трапеция

Трапеция, у которой оба угла при одной из ее боковых сторон прямые, называется прямоугольной.

∠BAD = ∠ABC = 90°

Разносторонняя трапеция

Трапеция является разносторонней, если ее боковые стороны не равны, и ни один из углов при основании не является прямым.

Свойства трапеции

Перечисленные ниже свойства применимы к любым видам трапеций. Свойства равнобедренной и прямоугольной трапеций представлены на нашем сайте в отдельных публикациях.

Свойство 1

Сумма углов трапеции, прилежащих к одной и той же боковой стороне, равна 180°.

α + β = 180°

Свойство 2

Средняя линия трапеции параллельна ее основаниям и равняется половине их суммы.

Свойство 3

Отрезок, который соединяет середины диагоналей трапеции, лежит на ее средней линии и равняется половине разности оснований.

  • KL – отрезок, соединяющий середины диагоналей AC и BD
  • KL лежит на средней линии трапеции MN

Свойство 4

Точки пересечения диагоналей трапеции, продолжений ее боковых сторон и середин оснований лежат на одной прямой.

  • DK – продолжение боковой стороны CD
  • AK – продолжение боковой стороны AB
  • E – середина основания BC, т.е. BE = EC
  • F – середина основания AD, т.е. AF = FD

Если сумма углов при одном основании равняется 90° (т.е. ∠DAB + ∠ADC = 90°), значит продолжения боковых сторон трапеции пересекаются под прямым углом, а отрезок, который соединяет середины оснований (

ML) равняется половине их разности.

Свойство 5

Диагонали трапеции делят ее на 4 треугольника, два из которых (при основаниях) подобны, а два других (при боковых сторонах) равны по площади.

  • ΔAED ~ ΔBEC
  • SΔABE = SΔCED

Свойство 6

Отрезок, проходящий через точку пересечения диагоналей трапеции параллельно ее основаниям, можно выразить через длины оснований:

Свойство 7

Биссектрисы углов трапеции при одинаковой боковой стороне взаимно перпендикулярны.

  • AP – биссектриса ∠BAD
  • BR – биссектриса ∠ABC
  • AP перпендикулярна BR

Свойство 8

В трапецию можно вписать окружность только в том случае, если сумма длин ее оснований равна сумме длин ее боковых сторон.

Т.е. AD + BC = AB + CD

Радиус вписанной в трапецию окружности равен половине ее высоты:

R = h/2.

Трапеция. Определение, виды, свойства

Определения

Определение 1. Трапецией называется четырехугольник, у которого две стороны параллельны а две другие − нет.

На Рис.1 четырехугольники ABCD и EFGH являются трапециями.

Параллельные стороны трапеции называются основаниями трапеции, а непараллельные стороны − боковыми сторонами (Рис.2).

В трапеции ABCD (Рис.1) углы A и B называют углами при основании AB, а углы C и D называют углами при основании CD.

Определение 2. Высотой трапеции называется перпендикуляр, отпущенный из любой точки прямой, проходящей через один из оснований трапеции, на прямую, проходящую через другое основание.

На Рис.3 отрезки DM, ON, QP являются вершинами трапеции ABCD. Поскольку величина каждой из этих отрезков является расстоянием между параллельными прямыми, проходящими через основания трапеции, то они равны друг другу.

Определение 3. Средней линией трапеции называется отрезок, соединяющий средние точки боковых сторон.

На рисунке Рис.4 \( \small MN \) является средней линией трапеции \( \small ABCD, \) причем \( \small AM=MD,\;\; BN=NC. \)

Виды трапеций

Если боковые стороны трапеции равны, то трапеция называется равнобокой или равнобедренной (Рис.5).

Трапеция называется прямоугольной, если одна из боковых сторон перпендикуляна основаниям трапеции (Рис.6).

Трапеция называется разносторонней, если длина всех сторон разные (т.е. если трапеция не прямоульная и не равнобедренная)(Рис.7).

Свойства трапеции

Свойство 1. Средняя линия трапеции параллельна основаниям и равна половине их суммы.

Доказательство. Пусть MN средняя линия трапеции ABCD (Рис.8). Докажем, что \( \small MN || AB, \)   \( \small MN=\frac12 (AB+CD). \)

Проведем прямую DN и обозначим точку ее пересечения с прямой AB точкой P. Так как MN является средней линией трапеции ABCD, то

Углы 1 и 2 вертикальные , следовательно

Углы 3 и 4 являются накрест лежащими, при рассмотрении параллельных прямых BP и CD пересеченные секущей CB, тогда (теорема 1 статьи Теоремы об углах, образованных двумя параллельными прямыми и секущей).

Исходя из равенств (1),(2) и (3) получим, что треугольники CND и NPC равны, по второму признаку равенства треугольников. Тогда BP = DC, DN = NP. Из равенств AM = MD и DN = NP следует, что MN является средней линией треугольника ADP. Тогда \( \small MN \ || \ AP \) ( или \( \small MN \ || \ AB \)) и \( \small MN =\frac 12 AP \). Но \( \small AP=AB +BP=AB+CD \). Тогда \( \small MN =\frac 12 (AB+CD).\)

Свойство 2. Сумма углов трапеции, прилежащих к одной боковой стороне равна 180°.

Доказательство. Рассмотрим трапецию ABCD (Рис.9).

Углы A и D являутся односторонними углами, при рассмотрении параллельных прямых AB и CD пересеченные секущей AD (теорема 3 статьи Теоремы об углах, образованных двумя параллельными прямыми и секущей). Тогда \( \small \angle A+ \angle D=180°.\)

Свойство 3. Отрезок, слединяющий середины диагоналей трапеции лежит на средней линии трапеции и равен половине разности оснований.

Доказательство. Рассмотрим трапецию ABCD (Рис.10).

Поскольку точки P и Q являются средними точками диагоналей AC и BD, соответственно, то:

MP − является средней линией треугольника ADC, так как , . Тогда

QN − является средней линией треугольника BCD, так как , Тогда

Из и следует, что P находится на прямой, проходящей через среднюю линию

MN, поскольку из точки M можно провести только одну прямую, параллельно CD (Аксиома 1 статьи Аксиома параллельных прямых).

Аналогично, из и следует, что Q находится на прямой, проходящей через среднюю линию MN, поскольку из точки N можно провести только одну прямую, параллельно CD.

Далее, учитывая (4) и (5), получим:

Откуда

Далее, учитывая свойство 1, получим:

Свойства равнобокой (равнобедренной) трапеции

Свойсво 1′. В равнобокой трапеции углы при каждом основании равны.

Доказательство. Рассмотрим равнобедренную (равнобокую) трапецию ABCD, где AD = BC (Рис.11).

Проведем высоты DM и CN. Поскольку DM = CN и AD = BC, то прямоугольники ADM и NCB равны гипотенузе и катету (см. статью Прямоугольный треугольник. Свойства, признаки равенства). Тогда \( \small \angle A=\angle B. \) Докажем, далее, что \( \small \angle ADC=\angle DCB. \) \( \small \angle A +\angle ADC=180° \) поскольку углы

A и ADC являются односторонними углами, при рассмотрении параллельных прямых AB и CD пересеченные секущей AD (теорема 3 статьи Теоремы об углах, образованных двумя параллельными прямыми и секущей). Аналогично \( \small \angle B +\angle DCB=180°. \) Учитывая, что \( \small \angle A=\angle B \), получим \( \small \angle ADC=\angle DCB. \)

Свойсво 2′. В равнобокой трапеции диагонали равны.

Доказательство. Рассмотрим треугольники ADC и DCB (Рис.12). Имеем CD общая сторона для обеих треугольников, AD = CB, \( \small \angle ADC=\angle DCB. \) Тогда треугольники равны по двум сторонам и углу между ними. Следовательно диагонали AC и DB трапеции ABCD равны.

Свойсво 3′. В равнобокой трапеции высота, приведенная из вершины тупого угла на основание, делит основание трапеции на отрезки, больший из которых равен половине суммы оснований, а меньший равен половине разности оснований.

Доказательство. Рассмотрим четырехугольник DMNC (Рис.11). Имеем:

Тогда четырехугольник DMNC является прямоугольником. Следовательно DC = MN. Поскольку треугольники ADM и NCB равны (см. доказательство следствия 1), то AM = NB. Следовательно:

Отсюда:

Далее

или

Трапеция. Свойства, признаки трапеции | Подготовка к ЕГЭ по математике

Трапеция – четырехугольник, у которого только одна пара сторон параллельна (а другая пара сторон не параллельна).

Параллельные стороны трапеции называются основаниями. Другие две — боковые стороны.
Если боковые стороны равны, трапеция называется равнобедренной.

Трапеция,  у которой есть  прямые углы при боковой стороне, называется прямоугольной.

Отрезок, соединяющий середины боковых сторон, называется средней линией трапеции.

 

Свойства трапеции

 

1.

 Средняя линия трапеции параллельна основаниям и равна их полусумме.

2. Биссектриса любого угла трапеции отсекает на её основании (или продолжении) отрезок, равный боковой стороне.

3. Треугольники и , образованные отрезками диагоналей и основаниями трапеции, подобны.

Коэффициент подобия –

Отношение площадей этих треугольников есть .

4. Треугольники и , образованные отрезками диагоналей и боковыми сторонами трапеции, имеют одинаковую площадь.

5. В трапецию можно вписать окружность, если сумма оснований трапеции равна сумме её боковых сторон.

6. Отрезок, соединяющий середины диагоналей, равен полуразности оснований и лежит на средней линии.

 

7. Точка пересечения диагоналей трапеции, точка пересечения продолжений её боковых сторон и середины оснований лежат на одной прямой.

8. Если сумма углов при любом основании трапеции равна 90°, то отрезок, соединяющий середины оснований, равен их полуразности.

Свойства и признаки равнобедренной трапеции

 

1. В равнобедренной трапеции углы при любом основании равны.

2. В равнобедренной трапеции длины диагоналей равны.

 

3. Если трапецию можно вписать в окружность, то трапеция – равнобедренная.

4. Около равнобедренной трапеции можно описать окружность.

5. Если в равнобедренной трапеции диагонали перпендикулярны, то высота равна полусумме оснований.

Вписанная  окружность

 

Если в трапецию вписана окружность с радиусом   и она делит боковую сторону точкой касания на два отрезка —  и ,  то

 

Площадь

 

или где   – средняя линия

Смотрите хорошую подборку  задач с трапецией (входят в ГИА и часть В ЕГЭ) здесь и здесь.

Смотрите также площадь трапеции.

Трапеция


Раздел содержит задачи по геометрии (раздел планиметрия) о трапециях. Если Вы не нашли решения задачи — пишите об этом на форуме. Курс наверняка будет дополнен. 

Трапеция. Определение, формулы и свойства

Трапе́ция (от др.-греч. τραπέζιον — «столик»; τράπεζα — «стол, еда») — четырёхугольник, у которого ровно одна пара противолежащих сторон параллельна. 

Трапеция — четырёхугольник, у которого пара противолежащих сторон параллельна. 

Примечание.  В этом случае параллелограмм является частным случаем трапеции.  

Параллельные противоположные стороны называются основаниями трапеции, а две другие — боковыми сторонами.

Трапеции бывают:

разносторонние ;

равнобокие;

прямоугольные

.
Красным и коричневым цветами обозначены боковые стороны, зеленым и синим — основания трапеции.

A — равнобокая (равнобедренная, равнобочная) трапеция
B — прямоугольная трапеция
C — разносторонняя трапеция

У разносторонней трапеции все стороны разной длины, а основания параллельны.

У равнобокой трапеции боковые стороны равны, а основания параллельны.

У прямоугольной трапеции основания параллельны, одна боковая сторона перпендикулярна основаниям, а вторая боковая сторона — наклонная к основаниям.

Свойства трапеции

  • Средняя линия трапеции параллельна основаниям и равна их полусумме
  • Отрезок, соединяющий середины диагоналей, равен половине разности оснований и лежит на средней линии. Его длина 
  • Параллельные прямые, пересекающие стороны любого угла трапеции, отсекают от сторон угла пропорциональные отрезки (см. Теорему Фалеса)
  • Точка пересечения диагоналей трапеции, точка пересечения продолжений её боковых сторон и середины оснований лежат на одной прямой (см. также свойства четырехугольника)
  • Треугольники, лежащие на основаниях трапеции, вершины которых являются точкой пересечения ее диагоналей являются подобными. Соотношение площадей таких треугольников равно квадрату соотношения оснований трапеции
  • Треугольники, лежащие на боковых сторонах трапеции, вершины которых являются точкой пересечения ее диагоналей являются равновеликими (равными по площади)
  • В трапецию можно вписать окружность, если сумма длин оснований трапеции равна сумме длин её боковых сторон. Средняя линия в этом случае равна сумме боковых сторон, делённой на 2 (так как средняя линия трапеции равна полусумме оснований)
  • Отрезок, параллельный основаниям и проходящий через точку пересечения диагоналей, делится последней пополам и равен удвоенному произведению оснований, деленному на их сумму 2ab / (a +b) (Формула Буракова)

Углы трапеции

Углы трапеции бывают острые, прямые и тупые.
Прямыми бывают только два угла.

У прямоугольной трапеции два угла прямые, а два других – острый и тупой. У других видов трапеций бывают: два острых угла и два тупых.

Тупые углы трапеции принадлежат меньшему по длине основанию, а острые – большему основанию.

Любую трапецию можно рассматривать как усеченный треугольник, у которого линия сечения параллельна основанию треугольника. 
Важно. Обратите внимание, что таким способом (дополнительным построением трапеции до треугольника) могут решаться некоторые задачи про трапецию и доказываются некоторые теоремы.

Как найти стороны и диагонали трапеции

Нахождение сторон и диагоналей трапеции делают с помощью формул, которые приведены ниже:


В указанных формулах применяются обозначения, как на рисунке.

a — меньшее из оснований трапеции
b — большее из оснований трапеции
c,d — боковые стороны
h1h2 — диагонали 


Сумма квадратов диагоналей трапеции равна удвоенному произведению оснований трапеции плюс сумма квадратов боковых сторон (Формула 2)

Площадь трапеции



где
a и b — параллельные основания трапеции
c и d — боковые стороны трапеции
m — средняя линия трапеции
r — радиус вписанной в трапецию окружности
S — площадь трапеции Содержание главы:
 Ромб | Описание курса | Площадь трапеции 

   

Геометрическая фигура трапеция. Виды трапеций. Свойства равнобедренной трапеции

1. ТРАПЕЦИЯ

2. Определение Трапецией называют четырехугольник, у которого две стороны параллельны, а две другие не параллельны.

Трапеция
от греч. trapeza — стол.
Трапеция буквально — «столик».
Геометрическая фигура была названа
так по внешнему сходству с маленьким
столом.

5. Элементы трапеции

Основание
Боковая
сторона
B
А
Основание
AD, BC – основания,
AB, CD – боковые стороны
C
D
Боковая
сторона

6. Определение Высотой трапеции называют перпендикуляр, опущенный из любой точки прямой, содержащей одно из оснований, на прямую,

содержащую другое
основание.

7. Виды трапеций

прямоугольная
равнобедренная
Трапецию, у которой боковые стороны равны,
называют равнобедренной.
Трапецию, у которой боковая сторона является её
высотой, называют прямоугольной.

8. Свойства равнобедренной трапеции

B
C
А
B
D
1) Углы при основаниях равны
A= B
C
А
D
2) Диагонали равны AC=BD

9. Признаки равнобедренной трапеции

B
А
C
B
D
1) Если углы при основании
трапеции равны, то трапеция
равнобедренная
Если A= B,
то ABCD – равнобедренная
трапеция
C
А
D
2) Если диагонали трапеции
равны, то трапеция
равнобедренная
Если AC=BD,
то ABCD – равнобедренная
трапеция

10. Средняя линия трапеции

A
М
Средняя линия трапеции –
отрезок, соединяющий
середины боковых сторон
B
N
MN– средняя линия
C
Средняя линия трапеции равна полусумме её оснований
MN=½(AB+DC)
Являются ли четырёхугольники трапециями?
В
1.
2.
90°
А 90°
N
100°
С
E
D
3.
C
60°
F
M
4.
80°
K
K
130°
E
P
60°
D
82°
98°
H
R

Трапеция. Свойства и элементы трапеции

Виды трапеций

Равнобедренная трапеция — это вид трапеции с равными боковыми сторонами.

Также встречаются такие названия, как равнобокая или равнобочная.

Прямоугольная трапеция — это трапеция, у которой углы при боковой стороне прямые.

Элементы трапеции

a, b — основания трапеции (a параллельно b),

m, n — боковые стороны трапеции,

d1, d2 — диагонали трапеции,

h — высота трапеции (отрезок, соединяющий основания и при этом перпендикулярен им),

MN — средняя линия (отрезок, соединяющий середины боковых сторон).

Площадь трапеции

  1. Через полусумму оснований a, b и высоту h: S = \frac{a + b}{2}\cdot h
  2. Через среднюю линию MN и высоту h: S = MN\cdot h
  3. Через диагонали d1, d2 и угол (\sin \varphi) между ними: S = \frac{d_{1} d_{2} \sin \varphi}{2}

Свойства трапеции

Средняя линия трапеции

Средняя линия параллельна основаниям, равна их полусумме и разделяет каждый отрезок с концами, находящимися на прямых, которые содержат основания, (к примеру, высоту фигуры) пополам:

MN || a, MN || b, MN = \frac{a + b}{2}

Сумма углов трапеции

Сумма углов трапеции, прилежащих к каждой боковой стороне, равна 180^{\circ}:

\alpha + \beta = 180^{\circ}

\gamma + \delta =180^{\circ}

Равновеликие треугольники трапеции

Равновеликими, то есть имеющими равные площади, являются отрезки диагоналей и треугольники AOB и DOC, образованные боковыми сторонами.{2}.

Отношение длин отрезков и оснований

Каждый отрезок, соединяющий основания и проходящий через точку пересечения диагоналей трапеции, поделен этой точкой в отношении:

\frac{OX}{OY} = \frac{BC}{AD}

Это будет являться справедливым и для высоты с самими диагоналями.

Описанная около трапеции окружность

Каждая равнобокая трапеция может содержать описанную окружность. Только равнобокую трапецию возможно вписать в окружность.

Вписанная в трапецию окружность

Треугольники AOB и DOC являются прямоугольными, если трапеция ABCD описана около окружности. Центром же вписанной окружности будет являться точка O.

Опущенные на гипотенузы, высоты этих треугольников, тождественны радиусу вписанной окружности, а высота трапеции тождественна диаметру вписанной окружности.

Определение трапеции. Виды трапеции. Свойства равнобедренной трапеции.

Трапеция –четырёхугольник, у которого две стороны параллельны, а две другие стороны не параллельны

Виды трапеции: равнобедренная и прямоугольная

Первое свойство равнобедренной трапеции – у равнобедренной трапеции боковые стороны равны

Второе свойство равнобедренной трапеции – у равнобедренно трапеции углы при основании равны

Определение прямоугольника. Свойство прямоугольника. Признак прямоугольника.

Прямоугольник –параллелограмм, у которого все углы прямые

Свойство прямоугольника – диагонали прямоугольника равны

Признак прямоугольника – если в параллелограмме диагонали равны, то этот параллелограмм – прямоугольник

Определение ромба. Свойство ромба.

Ромб –параллелограмм, у которого все стороны равны

Свойство ромба – диагонали ромба взаимно перпендикулярны и делят его углы пополам

Определение квадрата. Свойства квадрата.

Квадрат –прямоугольник, у которого все стороны равны

Первое свойство квадрата – все углы квадрата прямые

Второе свойство квадрата – диагонали квадрата равны, взаимно перпендикулярны, точкой пересечения делятся пополам и делят углы квадрата пополам

Понятие площади многоугольника. Единица измерения площадей. Свойства площадей. Площадь квадрата.

 

Площадь многоугольника –это величина той части плоскости, которую занимает многоугольник

Единицы измерения площадей: квадратный сантиметр (см2), квадратный метр (м2), квадратный миллиметр (мм2) и т. д.

Первое свойство площади – равные многоугольники имеют равные площади

Второе свойство площади – если многоугольник составлен из нескольких многоугольников, то его площадь равна сумме площадей этих многоугольников

Площадь квадрата – площадь квадрата равна квадрату его стороны (S=a2)

 

Определение высоты параллелограмма. Площадь параллелограмма.

Высота параллелограмма –перпендикуляр, проведённый из любой точки противоположной стороны к прямой, содержащей основание

Площадь параллелограмма –

произведение основания на высоту

 

произведение сторон на синус угла между ними

 

 

полупроизведение диагоналей на синус угла между ними

Определение высоты трапеции. Площадь трапеции.

Высота трапеции –перпендикуляр, проведённый из любой точки одного из оснований к прямой, содержащей другое основание. Площадь трапеции –площадь трапеции равна произведению полусуммы её оснований на высоту S= h

 

 

произведение средней линии на высоту

полупроизведение диагоналей на синус угла между ними

Площадь ромба (через диагонали). Площадь прямоугольника.

Площадь ромба –площадь ромба равна половине произведений его диагоналей

 

Площадь прямоугольника – площадь прямоугольника равна произведению его смежных сторон S=ab

Теорема Пифагора и обратная ей.

Теорема Пифагора –в прямоугольном треугольнике квадрат гипотенузы равен сумме квадратов катетов

c2 = a2 + b2

Теорема, обратная теореме Пифагора – если квадрат одной стороны треугольника равен сумме квадратов двух других сторон, то треугольник прямоугольный

Площадь прямоугольного треугольника. Теорема об отношениях площадей треугольников: с равными высотами; имеющих по равному углу.

Площадь прямоугольного треугольника –площадь прямоугольного треугольника равна половине произведения его катетов

Теорема об отношениях площадей треугольников имеющих по равному углу –если угол одного треугольника равен углу другого, то площади треугольников относятся как произведение сторон, заключающих равные углы

Теорема об отношениях площадей треугольников с равными высотами –если площади двух треугольников равны, то их площади относятся как основания

Определение подобных треугольников. Теоремы об отношениях периметров и площадей подобных треугольников.

Подобные треугольники –два треугольника, углы которых соответственно равны, а стороны одного треугольника пропорциональны сходственным сторонам другого

Теорема об отношении площади подобных треугольников – отношение площадей подобных треугольников равно квадрату коэффициента подобия

 

Свойства, определение, формула, типы, примеры

Трапеция завораживает, потому что определяется в зависимости от того, к какому географическому положению вы принадлежите. Если вы приехали в Соединенное Королевство в рамках поездки по обмену и попросите одного из учащихся нарисовать вам трапецию, они нарисуют ее как трапецию. Трапеция также называется трапецией в некоторых частях мира, и это тип четырехугольника с одной парой противоположных сторон, параллельных друг другу.

Определение трапеции

Трапеция — это четырехсторонняя замкнутая двумерная фигура, имеющая площадь и периметр.Две стороны трапеции параллельны друг другу, и они называются основаниями трапеции. Непараллельные стороны известны как ноги или боковые стороны трапеции. Кратчайшее расстояние между двумя параллельными сторонами называется высотой. Поскольку противоположные стороны параллельны друг другу, вычислить площадь трапеции несложно.

Свойства трапеции

Это свойства трапеции, которые выделяют ее среди других четырехугольников:

  • Основания (верх и низ) параллельны друг другу
  • Противоположные стороны трапеции (равнобедренные) одинаковой длины
  • Сумма углов рядом друг с другом составляет 180 °
  • Медиана параллельна обоим основаниям
  • Длина медианы равна средней длине обоих оснований i.е. (а + б) / 2
  • Если обе пары противоположных сторон параллельны трапеции, это считается параллелограммом
  • Если обе пары противоположных сторон параллельны, все стороны имеют одинаковую длину и расположены под прямым углом друг к другу, тогда трапецию можно рассматривать как квадрат
  • Если обе пары противоположных сторон параллельны, их противоположные стороны равны по длине и расположены под прямым углом друг к другу, то трапецию можно рассматривать как прямоугольник

Типы трапеций

Есть три типа трапеций, они приведены ниже:

  1. Равнобедренная трапеция
  2. Скаленовая трапеция
  3. Трапеция правая

Равнобедренная трапеция

Если стороны или непараллельные стороны трапеции равны по длине, то она называется равнобедренной трапецией.Углы параллельных сторон (основания) в равнобедренной трапеции равны между собой. Равнобедренная трапеция имеет линию симметрии, и обе диагонали равны по длине.

На приведенной ниже равнобедренной трапеции XYZW, XY и WZ называются основаниями трапеции. WX и YZ называются сторонами трапеции, поскольку они не параллельны друг другу.

Скаленовая трапеция

Если ни стороны, ни углы трапеции не равны, то это разносторонняя трапеция.В приведенной ниже разносторонней трапеции все четыре стороны, то есть AB, BC, CD и DA, имеют разную длину. Основания, то есть DC и AB, параллельны друг другу, но имеют разную длину.

Трапеция правая

Правая трапеция, также называемая прямоугольной трапецией, имеет пару прямых углов. Эти виды трапеций используются для оценки площадей под кривой. На правой трапеции внизу или прямоугольной трапеции есть два прямых угла: один в точке D, а другой в точке A.Одна пара противоположных сторон, то есть DC и AB, параллельны друг другу.

Площадь трапеции

Площадь трапеции рассчитывается путем измерения среднего значения параллельных сторон и умножения его на высоту.

Площадь трапеции рассчитывается по следующей формуле:

Площадь = [(AB + CD) / 2] × h

Где AB и CD — параллельные стороны, а h — высота

Периметр трапеции

Периметр трапеции равен сумме всех ее сторон.Если A, B, C, D — четыре стороны трапеции, то формула периметра:

Периметр = AB + BC + CD + AD

☛Связанные темы о трапеции

Ниже перечислены несколько тем, относящихся к трапеции.

Часто задаваемые вопросы о трапеции

Что такое трапеции?

Трапеция — это четырехсторонняя замкнутая двухмерная форма, имеющая площадь и периметр. Его еще называют Трапецией. Стороны трапеции параллельны друг другу, и они называются основаниями трапеции.Непараллельные стороны известны как ноги или боковые стороны трапеции. Кратчайшее расстояние между двумя параллельными сторонами называется высотой.

Как окалить трапецию?

Трапеции классифицируются на основе характера их сторон. Основные типы трапеций перечислены ниже:

  • Равнобедренная трапеция
  • Скаленовая трапеция
  • Трапеция правая

Каковы основные свойства трапеции?

Трапеции обладают множеством свойств, некоторые из них перечислены ниже:

  • Верхнее и нижнее основания трапеции параллельны.
  • Равнобедренная трапеция состоит из противоположных сторон равной длины.
  • Сумма углов рядом друг с другом составляет 180 °.

Как найти площадь трапеции?

Площадь трапеции рассчитывается путем вычисления среднего значения двух параллельных сторон и умножения его на высоту.

Площадь = [(a + b) / 2] × h, где a и b — длины оснований, а h — высота.

Что такое уравнение трапеции?

Есть два уравнения для трапеции.Одно уравнение вычисляет его площадь; другой — периметр. Периметр трапеции PQRS задается как Perimeter = PQ + QR + RS + PS. Площадь трапеции = [(a + b) / 2] x h, где a и b — длины оснований, а h — высота.

Трапеция — четырехугольник?

Поскольку у трапеции четыре стороны, она автоматически становится четырехугольником. У него две стороны, которые параллельны, и две стороны, которые не параллельны.

Каковы три атрибута трапеции?

Три основных атрибута трапеции:

  1. Его базовые углы и диагонали равны, если трапеция равнобедренная
  2. Точка пересечения диагоналей коллинеарна (на одной линии) серединам двух противоположных сторон
  3. Противоположные стороны равнобедренной трапеции совпадают

Как найти недостающую сторону трапеции?

Отсутствующая сторона трапеции может быть определена на основании предоставленной вам информации.В случае, если у вас есть площадь и длина оснований, вы можете найти длину высоты. Вы также можете определить длину отсутствующей стороны, если знаете периметр и длину трех других сторон трапеции.

Равны ли диагонали трапеции?

Трапеции бывают трех видов — Равнобедренные, Скаленовые и Правые. В случае равнобедренной трапеции диагонали равны, поскольку непараллельные части трапеции равны по длине.В случае разносторонней и правой трапеции диагонали не равны.

Что такое трапеция? (Определение, свойства и видео) // Tutors.com

Содержание

  1. Что такое трапеция?
  2. Определения трапеций
  3. Уголки трапеции
  4. Свойства трапеции
  5. Трапеции
  6. Виды трапеций

Что такое трапеция?

Трапеция — четырехугольник с одной парой параллельных сторон.Трапеция — это:

  • Плоская фигура (плоская)
  • Замкнутая фигура (имеет внутреннюю и внешнюю)
  • Многоугольник (прямые стороны)
  • Четырехугольник (четыре прямые стороны)

Чтобы сделать трапецию, вам понадобится треугольник. Подойдет любой треугольник: прямой, тупой, равнобедренный, разносторонний. Отрежьте верхнюю часть треугольника так, чтобы разрез был параллелен нижней части треугольника. Теперь у вас есть более крошечный треугольник и трапеция.

Поскольку для определения требуется только одна пара параллельных сторон, две другие стороны можно расположить разными способами, создавая четыре внутренних угла, которые в сумме всегда составляют 360 °.

Определения трапеций

Мы уже знаем, что трапеция похожа на нижнюю часть треугольника, если от нее отрезать меньший треугольник. Вы также можете сделать трапецию из четырех отрезков или четырех прямых объектов.

Используйте все, что вам нравится: сырые спагетти, карандаши, палочки от леденцов; все, что у вас есть под рукой. Четыре прямых (линейных) объекта могут быть четырех разных длин или трех разных длин (два из них могут быть одинаковыми).

Положите два объекта вниз или нарисуйте два отрезка линии, чтобы они были параллельны (равноудалены).Сделайте их горизонтально по отношению к вам. Поместите два других объекта слева и справа от этих двух или нарисуйте их так, чтобы все восемь конечных точек соприкасались.

Вот она, трапеция! Горизонтальные части основания . Последние две части, которые вы нарисовали или положили (на левом и правом концах), называются ножками трапеции.

Уголки трапеции

Обратите внимание, что мы не беспокоились ни о каком из внутренних углов, поскольку сохранение двух сторон параллельными заставляет остальную часть трапеции встать на место.Углы сортируются и складываются в 360 °.

Высота трапеции — это ее высота. Пусть вас не обманывают покатые ножки — если они наклонные, то длиннее высоты. Высота всегда измеряется от основания (любой параллельной стороны) до другой стороны под прямым углом к ​​основанию.

Вы можете провести перпендикулярную линию где угодно вдоль основания трапеции, и когда она касается противоположной, параллельной стороны, ее длина равна высоте.

Свойства трапеции

Трапеция — это параллелограмм?

Вы можете определить любую трапецию, если это четырехугольник с одной парой параллельных сторон.Многие математики включают параллелограммы как типы трапеций, потому что, конечно, параллелограмм имеет по крайней мере одной пары параллельных сторон. Другие математики исключают параллелограммы, говоря, что трапеция должна иметь ровно одной пары параллельных сторон.

Еще одним отличительным свойством всех трапеций является то, что любые два смежных внутренних угла будут дополнительными (добавить к 180 °).

Трапеции

Обычно для максимальной ясности на изображениях и рисунках трапеций показаны две параллельные стороны, идущие горизонтально, причем более длинная сторона обращена вниз в качестве основания.Однако будьте готовы увидеть трапеции в любой ориентации . Трапецию можно нарисовать или изобразить либо с ногой внизу, либо с более короткой параллельной стороной внизу.

Поскольку параллельные стороны — единственные, которые могут быть основаниями, даже когда трапеция рисуется с ножкой внизу и горизонтально, это , а не основание. Это все еще нога.

Основание обычно представляет собой более длинную параллельную сторону, но если трапеция рисуется с более короткой параллельной стороной внизу, то это основание.

Типы трапеций

Поскольку трапеции могут возникать в виде треугольников, они имеют общие названия, полученные от разных типов треугольников:

  1. Чешуйчатая трапеция — Начинается как разносторонний треугольник
  2. Равнобедренная трапеция — начиналась как равнобедренный треугольник
  3. Правая трапеция — Когда-то был прямоугольный треугольник
  4. Тупая трапеция — Как тупой треугольник
  5. Острая трапеция — Как острый треугольник

Скаленовая трапеция

Разносторонняя трапеция имеет четыре стороны неравной длины.Основания параллельны, но разной длины. Две ножки разной длины.

Равнобедренная трапеция

Равнобедренная трапеция имеет ножки одинаковой длины. Основания параллельны, но разной длины.

Трапеция правая

Правая трапеция имеет один прямой угол (90 °) между основанием и ножкой.

Тупая трапеция

Тупая трапеция имеет один внутренний угол (образованный основанием и ножкой) больше 90 °.

Острая трапеция

Острая трапеция имеет оба внутренних угла (образованные более длинным основанием и ножками ) размером менее 90 °.

Краткое содержание урока

Используя всего четыре линии и четыре внутренних угла, мы построили трапецию , узнали, что делает трапецию уникальной (пара параллельных сторон), каковы различные части трапеции и названия пяти специальных трапеций.

Следующий урок:

Как найти площадь трапеции

Что такое трапеция? [Определение, факты и пример]

Что такое трапеция?

Трапеция, также известная как трапеция, представляет собой плоскую замкнутую форму, имеющую 4 прямые стороны с одной парой параллельных сторон.

Параллельные стороны трапеции называются основаниями, а непараллельные стороны — ножками. У трапеции тоже могут быть параллельные ножки. Параллельные стороны могут быть горизонтальными, вертикальными или наклонными.

Расстояние по перпендикуляру между параллельными сторонами называется высотой.

Примеры :

Без примеров :

Типы трапеций

Трапеция бывает трех типов, а именно

1. Правая трапеция : имеет пару прямых углов.

2. Равнобедренная трапеция : имеет равную длину непараллельных сторон.На изображении стороны AD и BC равны.

3. Чешуйчатая трапеция : у нее нет равных углов и равных сторон.

Свойства трапеции

  • Трапеция называется параллелограммом, если обе пары ее противоположных сторон параллельны.

  • Трапеция — это квадрат, если обе пары его противоположных сторон параллельны; все его стороны равной длины и расположены под прямым углом друг к другу.

  • Трапеция может быть прямоугольником, если обе пары ее противоположных сторон параллельны; его противоположные стороны равны по длине и расположены под прямым углом друг к другу.

Примеры из реальной жизни

Некоторые из многих примеров трапеции — это лицевая сторона коробки для попкорна, сумочки и мостов.

Интересные факты

  • Трапеция была известна как τραπέζιον «ловушка» на древнегреческом, что буквально означает «столик», а также означает «неправильный четырехугольник».Кроме того, «оид» в переводе с древнегреческого означает «похожий».

  • Слово трапеция было введено в английский язык в 1570 году. Марин Прокл был первым, кто использовал слово «трапеция» в первой книге «Начала» Евклида.

Трапеция

Трапеция — это четырехугольник с одной парой параллельных сторон. На рисунке ниже показано несколько различных типов трапеций.

Примечание: некоторые определяют трапецию как четырехугольник, по крайней мере, с одной парой параллельных сторон, подразумевая, что он может содержать две пары параллельных сторон, что сделало бы его параллелограммом.В рамках данной статьи мы определим трапецию как четырехугольник с одной парой параллельных сторон.

Грани трапеции

Параллельные стороны трапеции называются ее основаниями. Непараллельные стороны называются ножками. Высота (или высота) — это отрезок линии, используемый для измерения кратчайшего расстояния между двумя основаниями.

Углы трапеции

В трапеции пара углов, имеющих общее основание, называется базовыми углами.Для трапеций, показанных на диаграмме ниже, A и ∠D — это базовые углы, а ∠B и ∠C — базовые углы. Пара углов рядом с опорой дополнительные: ∠A + ∠B = 180 ° и ∠C + ∠D = 180 °.

Срединный отрезок трапеции

Середина трапеции — это отрезок прямой, соединяющий середину ее ног. Средний сегмент параллелен основаниям и имеет длину, равную половине суммы двух оснований.

На рисунке выше средний сегмент EF делит ветви AB и CD пополам и

Площадь трапеции

Площадь А трапеции равна половине произведения суммы ее оснований и ее высоты.

, где h — высота, а b 1 и b 2 — базовые длины.

Классификация трапеций

Трапеции можно классифицировать как разносторонние или равнобедренные в зависимости от длины ног. Если ноги и углы основания трапеции совпадают, это равнобедренная трапеция. В остальном это разносторонняя трапеция.

Чешуйчатая трапеция Равнобедренная трапеция
Ножки или углы основания не совпадают Конгруэнтные ножки и углы основания

Трапеции также можно классифицировать как прямые трапеции или тупые трапеции в зависимости от их углов.Если одна из ножек перпендикулярна основанию, трапеция представляет собой прямую трапецию. В противном случае трапеция должна содержать два тупых угла и называется тупой трапецией.

Правая трапеция Тупая трапеция
Одна нога перпендикулярна основаниям. Два угла тупые.

Равнобедренные трапеции

Равнобедренная трапеция — это особая трапеция с совпадающими сторонами и углами основания.Он обладает следующими свойствами.

  • Две диагонали равнобедренной трапеции совпадают. Они также образуют совпадающие треугольники. На изображенной ниже равнобедренной трапеции диагонали AC и BD совпадают. Поскольку ноги равнобедренной трапеции конгруэнтны, а следующие пары треугольников имеют общее основание, △ ABD ≅ DCA и △ ABC ≅ △ DCB согласно постулату Сторона-Сторона-Сторона.
  • Соотношение сегментов, составляющих диагонали трапеции, пропорционально. На диаграмме выше AE = DE, BE = CE и
  • Равнобедренная трапеция имеет одну линию симметрии: высоту, которая делит ее основания пополам.На рисунке выше высота FE делит пополам основания AD и BC. Отражение равнобедренной трапеции ABCE поперек FE сохраняет его, делая FE линией симметрии.

Квадрат, прямоугольник, ромб, трапеция, параллелограмм

Четырехугольник просто означает «четыре стороны»
( четырехугольник, означает четыре, боковой, означает сторону).

Четырехугольник имеет с четырьмя сторонами , он 2-мерный (плоская форма), замкнутый (линии соединяются) и имеет прямых стороны.

Попробуйте сами

geometry / images / geom-quad.js? mode = выбрать

(также см. Интерактивные четырехугольники)

Недвижимость

В четырехугольнике:

  • четыре стороны (края)
  • четыре вершины (углы)
  • внутренние углы, которые добавляют к 360 градусов :

Попробуйте нарисовать четырехугольник и измерить углы.Они должны добавить к 360 °

Типы четырехугольников

Есть особые виды четырехугольника:

Некоторые типы также включены в определение других типов! Например, квадрат , ромб и прямоугольник также являются параллелограммами . Подробности смотрите ниже.

Давайте рассмотрим каждый вид по очереди:

Прямоугольник


маленькие квадратики в каждом углу означают «прямой угол»

Прямоугольник — это четырехсторонняя форма, каждый угол которой является прямым (90 °).

Также противоположных стороны параллельны и равной длины.

Площадь


маленькие квадратики в каждом углу означают «прямой угол»

У квадрата равные стороны (отмечены буквой «s»), и каждый угол представляет собой прямой угол (90 °)

Также противоположные стороны параллельны.

Квадрат также соответствует определению прямоугольника (все углы равны 90 °) и ромба (все стороны равной длины).

Ромб

Ромб — это четырехгранная форма, все стороны которой имеют одинаковую длину (обозначены буквой «s»).

Также противоположные стороны параллельны и противоположных угла равны.

Еще один интересный момент — диагонали (пунктирные линии) пересекаются посередине под прямым углом. Другими словами, они «рассекают» друг друга пополам под прямым углом.

Ромб иногда называют ромбом или ромбом .

Параллелограмм

У параллелограмма противоположные стороны параллельны и равны по длине. Также противоположные углы равны (углы «А» такие же, а углы «В» одинаковы).

ПРИМЕЧАНИЕ. Квадраты, прямоугольники и ромбы — это все Параллелограммы!

Пример:

A параллелограмм с:

  • все стороны равны и
  • угол «А» и «B» в виде прямых углов

— это квадрат !

Трапеция (UK: Trapezium)

Трапеция

Равнобедренная трапеция

Трапеция (в Великобритании называется трапецией) имеет пару параллельных противоположных сторон.

И трапеция (в Великобритании она называется трапецией) — четырехугольник без параллельных сторон:

Трапеция Трапеция
В США: пара параллельных сторон НЕТ параллельных сторон
В Великобритании: НЕТ параллельных сторон пара параллельных сторон
(определения для США и Великобритании поменяны местами!)

Равнобедренная трапеция , как показано выше, имеет левую и правую стороны равной длины, которые соединяются с основанием под равными углами.

Воздушный змей

Эй, это похоже на воздушного змея (обычно).

Имеет две пары сторон:

Каждая пара состоит из двух соединяющихся сторон равной длины.

Также:

  • углы, где встречаются две пары равны.
  • диагонали, показанные выше пунктирными линиями, пересекаются в под прямым углом.
  • одна из диагоналей делит пополам (делит пополам) другую.

… вот и все специальные четырехугольники.

Неправильные четырехугольники

Единственный правильный четырехугольник (все стороны равны и все углы равны) — это квадрат. Итак, все остальные четырехугольники неправильные .

Схема «Семейное древо»

Определения четырехугольника: , включая .

Пример: квадрат также является прямоугольником.

Итак, мы включаем квадрат в определение прямоугольника.

(Мы не говорим : «Наличие всех углов 90 ° делает его прямоугольником, кроме случаев, когда все стороны равны, тогда это квадрат».)

Это может показаться странным, поскольку в повседневной жизни мы думаем о квадрате как о , а не о как о прямоугольнике … но в математике это .

Используя приведенную ниже таблицу, мы можем ответить на такие вопросы, как:

  • Квадрат — это тип прямоугольника? (Да)
  • Прямоугольник — это разновидность воздушного змея? (Нет)

Сложные четырехугольники

О да! когда две стороны пересекаются, мы называем это «сложным» или «самопересекающимся» четырехугольником, например:

У них все еще есть 4 стороны, но две стороны пересекаются.

Многоугольник

Четырехугольник — это многоугольник. Фактически, это четырехсторонний многоугольник, точно так же, как треугольник — это трехсторонний многоугольник, пятиугольник — пятисторонний многоугольник и так далее.

Играй с ними

Теперь, когда вы знаете различные типы, вы можете поиграть с интерактивными четырехугольниками.

Другие названия

Четырехугольник иногда можно назвать:

  • a Quadrangle четыре угла «), поэтому звучит как «треугольник»
  • a Tetragon четыре многоугольника »), поэтому звучит как «пятиугольник», «шестиугольник» и т. Д.

621 622 623 624 763 764, 2128, 2129, 3230, 3231

Трапеция — определение, свойства, формулы и примеры

Определение

Трапеция — это плоская геометрическая форма с четырьмя прямыми сторонами, имеющая по крайней мере одну пару противоположных параллельных сторон. Это похоже на треугольник, у которого срезана верхняя часть.

Параллельные стороны являются основаниями, а две другие стороны называются ножками или боковыми сторонами.Его также называют трапецией в Великобритании и некоторых других частях света.

Трапеция

Недвижимость

Свойства трапеции
  1. Имеет четыре стороны и четыре угла; в трапеции ABCD, AB, BC, CD и DA — четыре стороны, составляющие углы ∠DAB, ∠ABC, ∠BCD, а ∠CDA
  2. Имеет одну пару параллельных сторон. Две параллельные стороны — это основания, а непараллельные стороны — ноги; здесь AD = короткое основание, BC = длинное основание, в то время как AB = отрезок 1 и CD = отрезок 2, и AD ∥ BC
  3. Смежные углы в сумме составляют 180 °; Итак, ∠DAB + ∠ABC = 180 °, ∠ABC + ∠BCD = 180 °, ∠BCD + ∠CDA = 180 ° и ∠CDA + ∠DAB = 180 °
  4. Медиана параллельна двум основаниям и разделяет непараллельные стороны на две равные части; Итак, EF ∥ AD и EF ∥ BC

Формулы

Медиана

Это отрезок посередине между двумя основаниями.Его еще называют средней линией или средним сегментом. Формула приведена ниже:

Медиана трапеции

Найдите середину трапеции с основаниями размером 7 м и 9 м.

Решение:

Как мы знаем,
Медиана ( M ) = ½ ( a + b ) , здесь a = 9 м и b = 7 м
= ½ (9 + 7) м
= 16/2 м
= 8 м

Площадь

Общее пространство, ограниченное трапецией.Формула приведена ниже:

Площадь трапеции

Найдите площадь трапеции, когда два основания составляют 8 см и 6 см, а высота равна 10 см

Решение:

Как известно,
Площадь ( A ) = ½ ( a + b ) × h , здесь a = 8 см, b = 6 см и h = 10 см
= 1/2 × (8 + 6) × 10 см 2
= ½ × 14 × 10 см 2
= 70 см 2

Задача: Нахождение площади трапеции при известных значениях МЕДИАНА и ВЫСОТА

Найдите площадь трапеции со средним значением 5 см и высотой 11 см

Решение:

Здесь мы воспользуемся альтернативной формулой,
A = м × h , здесь м = медиана и h = высота
В этой трапеции м = 5 см и h = 11 см
Т.к., A = м × h
= 5 × 11 см 2
= 55 см 2

Периметр

Общее расстояние, пройденное по краю трапеции.Формула приведена ниже:

Периметр трапеции

Найдите периметр трапеции со сторонами 6 м, 8 м, 12 м и 15 м.

Решение:

Как известно,
Периметр ( P ) = a + b + c + d , здесь a = 15 m, b = 12 м, c = 6 м и d = 8 м
= 15 м + 12 м + 6 м + 8 м
= 41 м

Типы

Трапеции подразделяются на две группы: по сторонам : 1) разносторонняя и 2) равнобедренная трапеция; на основе углов : 1) острый, 2) тупой и 3) правая трапеция.

Различия между типами приведены ниже:

Типы трапеции

14 примеров трапеций в реальной жизни — StudiousGuy

Трапеция — это четырехугольник, у которого не менее двух сторон параллельны друг другу. Это двухмерная плоская геометрическая фигура. Площадь трапеции равна половине произведения перпендикулярного расстояния между параллельными сторонами и суммы длин параллельных сторон. Периметр трапеции можно рассчитать, вычислив сумму длин сторон.Трапеция также известна как трапеция.

Указатель статей (Нажмите, чтобы перейти)

Типы Трапеция

В геометрии существует три основных типа трапеций: правая трапеция, равнобедренная трапеция и разносторонняя трапеция.

1. Правая трапеция

Прямая трапеция обязательно состоит из пары прямых углов.

2. Равнобедренная трапеция

Равнобедренная трапеция — это тип трапеции, непараллельные стороны которой равны по длине.

3. Скаленовая трапеция

Разносторонняя трапеция или разносторонняя трапеция — это трапеция, не имеющая равных сторон или равных углов.

Свойства трапеции

1. Сумма всех внутренних углов трапеции равна 360 °.

2. Трапеция имеет пару параллельных сторон и пару непараллельных сторон.

3. Диагонали трапеции делят друг друга пополам.

4. Длина среднего сегмента трапеции составляет половину суммы параллельных оснований.

5. Сумма углов между параллельными сторонами и одной из непараллельных сторон равна 180 °.

Примеры объектов трапециевидной формы

1. Стекло

Ширина стекла уменьшается при движении вниз. Следовательно, один из лучших примеров трапеции можно увидеть, наблюдая за формой стакана для питья.

2. Лампа

Крышка абажура лампы — еще один пример объектов трапециевидной формы, используемых в реальной жизни. Он состоит из пары параллельных сторон и пары непараллельных сторон.

3. Ванночка для попкорна

Трапециевидную форму ванны для попкорна легко узнать. Верх и низ ванны составляют параллельные стороны, а другие стороны образуют непараллельные стороны.

4.Горшок

Если вы посмотрите на двухмерную проекцию цветочного горшка, вы легко сможете увидеть форму трапеции.

5. Сумочка

Посмотрите на форму сумочки. Вы можете легко заметить, что верхняя и нижняя части пакета параллельны друг другу, в то время как остальные его стороны не параллельны. Таким образом, сумочка является ярким примером предметов трапециевидной формы, используемых в реальной жизни.

6.Ковш

Структура ведра аналогична структуре трапеции, потому что она состоит из пары параллельных линий и пары непараллельных линий.

7. Гитара

Примерно в 1970 году гитары с трапециевидной формой, изготовленные Крисом Мартином, стали довольно популярными. Даже сейчас есть определенные места, где можно увидеть такие трапециевидные гитары.

8. Кольцо

Если вы возьмете кольцо и посмотрите на драгоценный камень, закрепленный в кожухе на его вершине, вы легко увидите трапециевидную форму.Верх плоской жемчужины и базовая линия кожуха имеют тенденцию образовывать две параллельные линии, в то время как боковые стороны кожуха образуют непараллельные линии.

9. Ванна

Одна из распространенных форм, которую компании-производители оборудования выбирают для изготовления ванн, — это трапеция. Другие формы могут включать прямоугольник, круг и т. Д.

10. Колесная тележка

Контейнер, используемый в тачке, обычно имеет трапециевидную форму.Трапециевидная форма контейнера позволяет вмещать сравнительно больше материала, чем другие формы.

11. Лопата

Лезвие лопаты имеет форму четырехугольника с парой параллельных линий и парой непараллельных линий.