Почему в растительных организмах углеводов больше чем в растительных: Почему в растительных организмах углеводов значительно больше, чем в животных

Органические вещества. Углеводы. Белки



Вспомните!

Какие вещества называют биологическими полимерами?

Это полимеры – высокомолекулярные соединения, входящие в состав живых организмов. Белки, некоторые углеводы, нуклеиновые кислоты.

Каково значение углеводов в природе?

Широко распространена в природе фруктоза — фруктовый сахар, который значительно слаще других сахаров. Этот моносахарид придаёт сладкий вкус плодам растений и мёду. Самый распространённый в природе дисахарид — сахароза, или тростниковый сахар, — состоит из глюкозы и фруктозы. Её получают из сахарного тростника или сахарной свёклы. Крахмал для растений и гликоген для животных и грибов являются резервом питательных веществ и энергии. Целлюлоза и хитин выполняют в организмах структурную и защитную функции. Целлюлоза, или клетчатка, образует стенки растительных клеток. По общей массе она занимает первое место на Земле среди всех органических соединений. По своему строению очень близок к целлюлозе хитин, который составляет основу наружного скелета членистоногих и входит в состав клеточной стенки грибов.

Назовите известные вам белки. Какие функции они выполняют?

Гемоглобин – белок крови, транспорт газов в крови

Миозин – белок мышц, сокращение мышц

Коллаген – белок сухожилий, кож, эластичность, растяжимость

Казеин – белок молока, питательное вещество

Вопросы для повторения и задания

1. Какие химические соединения называют углеводами?

Это обширная группа природных органических соединений. В животных клетках углеводы составляют не более 5% сухой массы, а в некоторых растительных (например, клуб ни картофеля) их содержание достигает 90% сухого остатка. Углеводы подразделяют на три основных класса: моносахариды, дисахариды и полисахариды.

2. Что такое моно- и дисахариды? Приведите примеры.

Моносахариды состоят из мономеров, низкомолекулярные органические вещества. Моносахариды рибоза и дезоксирибоза входят в состав нуклеиновых кислот. Самый распространенный моносахарид – глюкоза. Глюкоза присутствует в клетках всех организмов и является одним из основных источников энергии для животных. Если в одной молекуле объединяются два моносахарида, такое соединение называют дисахаридом. Самый распространённый в природе дисахарид — сахароза, или тростниковый сахар.

3. Какой простой углевод служит мономером крахмала, гликогена, целлюлозы?

Глюкоза

4. Из каких органических соединений состоят белки?

Длинные белковые цепи построены всего из 20 различных типов аминокислот, имеющих общий план строения, но отличающихся друг от друга по строению радикала. Соединяясь, молекулы аминокислот образуют так называемые пептидные связи.

Две полипептидные цепи, из которых состоит гормон поджелудочной железы — инсулин, содержат 21 и 30 аминокислотных остатков. Это одни из самых коротких «слов» в белковом «языке». Миоглобин — белок, связывающий кислород в мышечной ткани, состоит из 153 аминокислот. Белок коллаген, составляющий основу коллагеновых волокон соединительной ткани и обеспечивающий её прочность, состоит из трёх полипептидных цепей, каждая из которых содержит около 1000 аминокислотных остатков.

5. Как образуются вторичная и третичная структуры белка?

Закручиваясь в виде спирали, белковая нить приобретает более высокий уровень организации — вторичную структуру. И наконец, спираль полипептида сворачивается, образуя клубок (глобулу). Именно такая третичная структура белка и является его биологически активной формой, обладающей индивидуальной специфичностью. Однако для ряда белков третичная структура не является окончательной. Вторичная структура – это полипептидная цепь, закрученная в спираль.

Для более прочного взаимодействия во вторичной структуре, происходит внутримолекулярное взаимодействие с помощью –S–S– сульфидных мостиков между витками спирали. Это обеспечивает прочность данной структуры. Третичная структура – это вторичная спиральная структура закручена в глобулы – компактные комочки. Эти структуры обеспечивают максимальную прочность и большую распространенность в клетках по сравнению с другими органическими молекулами.

6. Назовите известные вам функции белков. Чем вы можете объяснить существующее многообразие функций белков?

Одна из основных функций белков – ферментативная. Ферменты – это белки-катализаторы, ускоряющие химические реакции в живых организмах. Ферментативная реакция – это химическая реакция, протекающая только при наличии фермента. Без фермента не протекает не одна реакции в живых организмах. Работа ферментов строго специфична, у каждого фермента свой субстрат, который он расщепляет. Фермент подходит к своему субстрату как «ключ к замку». Так, фермент уреаза регулирует расщепление мочевины, фермент амилаза – крахмала, а ферменты протеазы – белки. Поэтому для ферментов применяют выражение «специфичность действия».

Белки выполняют и другие разнообразные функции в организмах: структурная, транспортная, двигательная, регуляторная, защитная, энергетическая. Функции белков довольно многочисленны, так как лежат в основе многообразия проявления жизни. Это компонент биологических мембран, перенос питательных веществ, например, гемоглобин, работа мышц, гормональная функция, защита организма – работа антигенов и антител, и прочие важнейшие функции в организме.

7. Что такое денатурация белка? Что может явиться причиной денатурации?

Денатурация – это нарушения третичной пространственной структуры белковых молекул под действием различных физических, химических, механических и других факторов. Физические факторы – это температура, излучение, Химические факторы – это действие на белки любых химических веществ: растворители, кислоты, щелочи, концентрированные вещества и прочее. Механические факторы – встряхивание, давление, растяжение, скручивание и прочее.

Подумайте! Вспомните!

1. Используя знания, полученные при изучении биологии растений, объясните, почему в растительных организмах углеводов значительно больше, чем в животных.

Так как в основе жизни – питания растений лежит фотосинтез, это процесс образования сложных органических соединений углеводов из более простых неорганических углекислого газа и воды. Основной углевод синтезируемый растения для воздушного питания – глюкоза, также это может быть крахмал.

2. К каким заболеваниям может привести нарушение превращения углеводов в организме человека?

Регуляция углеводного обмена в основном осуществляется гормонами и центральной нервной системой. Глюкокортикостероиды (кортизон, гидрокортизон) тормозят скорость транспорта глюкозы в клетки тканей, инсулин ускоряет его; адреналин стимулирует процесс сахарообразования из гликогена в печени.

Коре больших полушарий также принадлежит определенная роль в регуляции углеводного обмена, так как факторы психогенного характера усиливают образование сахара в печени и вызывают гипергликемию.

О состоянии углеводного обмена можно судить по содержанию сахара в крови (в норме 70—120 мг%). При сахарной нагрузке эта величина возрастает, но затем быстро достигает нормы. Нарушения углеводного обмена возникают при различных заболеваниях. Так, при недостатке инсулина наступает сахарный диабет.

Понижение активности одного из ферментов углеводного обмена — мышечной фосфорилазы — ведет к мышечной дистрофии.

3. Известно, что, если в рационе отсутствует белок, даже несмотря на достаточную калорийность пищи, у животных останавливается рост, изменяется состав крови и возникают другие патологические явления. Какова причина подобных нарушений?

В организме всего 20 различных типов аминокислот, имеющих общий план строения, но отличающихся друг от друга по строению радикала, они образуют разные белковые молекулы, если не употреблять белки, например, незаменимые, которые не могут в организме образовываться самостоятельно, а должны потребляться с пищей. Таким образом, если не есть белки, не смогут образовываться многие белковые молекулы внутри самого организма и возникнуть патологические изменения. Рост контролируется ростом костных клеток, основной любой клетки является белок; гемоглобин основной белок крови, который обеспечивает перенос основных газов в организме (кислород, углекислый газ).

4. Объясните трудности, возникающие при пересадке органов, опираясь на знания специфичности белковых молекул в каждом организме.

Белки являются генетическим материалом, так как в них записана структура ДНК и РНК организма. Тем самым белки имеют генетические особенности у каждого организма, в них зашифрована информация генов, в этом заключается трудность при пересадке от чужих (неродственных) организмов, так как у них различные гены, а значит и белки.

5. Оцените содержание белков, жиров и углеводов в продуктах питания (на основании данных, представленных на этикетках).

27) Углеводы как природно-сырьевой источник.

Углеводы наряду с белками и липидами являются важнейшими химическими соединениями для живых организмов: они являются компо­нентами клеток всех растительных и животных организмов. В составе человека и животных углеводы присутствуют (не более 2% от сухой массы тела). В растительных организмах на долю углеводов приходится до 80% сухой массы, поэтому в целом в биосфере углеводов больше, чем всех других органических соединений, вместе взятых.

Углеводы образуются растениями в процессе фотосинтеза. Человек и животные используют углеводы, синтезируемые растениями. Углеводы оставляют значительную долю пищи млекопи­тающих. Человек и животные используют углеводы, синтезируемые растениями. Углеводы оставляют значительную долю пищи млекопи­тающих.

Биологические функции углеводов:

Энергетическая функция. Ее выполняют резервные гомополисахариды — крахмал и гликоген.

Опорную функциювыполняет целлюлоза в растительных ор­ганизмах и хондроитинсульфаты в костной ткани.

Защитно-механическая— функция гетерополисахаридов. Высокая вязкость и слизеподобная консистенция объясняет их роль защищающего поверхность клеток.

Связующая, или структурная, функция — кислые гетерополи­сахариды являются структурным межклеточным веществом, одновремен­но выполняющим функцию биологического цемента (например гиалуроновая кислота).

Гидроосмотическая и ионрегулирующая функции. Кислые гетерополисахариды, благодаря высокой гидрофильности и отрицатель­ному заряду, способны удерживать большие количества воды и катионов.

Синтетическая функция. Углеводы используются для синтеза соединений других классов: нуклеиновых кислот, нуклеотидных коферментов, липидов, белковых аминокислот, гликопептидов и т.д.

В молекулах невосстанавливающих дисахаридов гликозидная связь образуется за счет полуацетальных гидроксильных групп обоих моносахаридов. Такие дисахариды не имеют в своем составе свободного полуацетольного гидроксила, поэтому в растворах они существует только в циклической форме их растворы не мутаротируют и не обладают восстанавливающими свойствами. Невосстанавливающие дисахариды не дают реакций по альдегидной группе и гликозидному гидроксилу. Они способны лишь к образованию простых и сложных эфиров. Представителями невосстанавливающих дисахаридов являются : сахароза, трегалоза.

Невосстанавливающие дисахариды не имеют ОН-группы ни при одном аномерном центре, в результате чего, они не вступают в реакции с фелинговой жидкостью и реактивом Толленса.

Неосстанавливающие дисахариды:

Сахароза — дисахарид, состоящий из α-D-глюкозы и β-D-фруктозы, соединённых α,β-1,2-гликозидной связью. В сахарозе обе аномерные ОН-группы остатков глюкозы и фруктозы участвуют в образовании гликозидной связи. Следовательно, сахароза не относится к восстанавливающим сахарам. Сахароза — растворимый дисахарид со сладким вкусом. Источником сахарозы служат растения, особенно сахарная свёкла, сахарный тростник. Последнее объясняет возникновение тривиального названия сахарозы — «тростниковый сахар».

Трегалоза входит в состав очень многих растений, микроорганизмов, грибов, водорослей, насекомых, креветок, пивных дрожжей, кактусов. При гидролизе образует только глюкозу. Трегалоза предотвращает распад клеточных мембран, защищает белки и другие биомолекулы от высыхания, сохраняет биологическую активность. Трегалоза образует защитный слой вокруг белков, таким образом сохраняя жизнь в экстремальных условиях жары или холода. Благодаря трегалозе растения и насекомые могут выдерживать большие перепады температур,холод и высокие температуры, сохраняя при этом свою жизнеспособность. Данное качество  трегалозы сохранять клетки и биомолекулы от высыхания широко используется в косметологии. Трегалоза используется в пищевой, фармацевтической и косметической промышленности.

Химические свойства:

Как и многоатомные спирты, дисахариды вступают в реакции алкилирования и ацилирования.( В ЖЕСТКИХ УСЛОВИЯХ образуются гликозиды) по кислородному мостику реакция гидролиза.

2.6.1: Метаболизм углеводов — Биология LibreTexts

  1. Последнее обновление
  2. Сохранить как PDF
  • Идентификатор страницы
    8806
    • Boundless (теперь LumenLearning)
    • Boundless
    Цели обучения
    • Анализ важности углеводного обмена для производства энергии

    Метаболизм углеводов

    Углеводы являются одной из основных форм энергии для животных и растений. Растения строят углеводы, используя световую энергию солнца (в процессе фотосинтеза), а животные поедают растения или других животных для получения углеводов. Растения хранят углеводы в длинных цепочках полисахаридов, называемых крахмалом, а животные хранят углеводы в виде молекулы гликогена. Эти большие полисахариды содержат много химических связей и поэтому хранят много химической энергии. Когда эти молекулы расщепляются во время метаболизма, энергия химических связей высвобождается и может быть использована для клеточных процессов.

    Рис. Все живые существа используют углеводы в качестве источника энергии. : Растения, такие как этот дуб и желудь, используют энергию солнечного света для производства сахара и других органических молекул. И растения, и животные (например, эта белка) используют клеточное дыхание для получения энергии из органических молекул, первоначально произведенных растениями

    Производство энергии из углеводов (клеточное дыхание)

    Метаболизм любого моносахарида (простого сахара) может производить энергию для клетки использовать. Избыточные углеводы откладываются в виде крахмала у растений и в виде гликогена у животных, готовых к обмену веществ, если потребность организма в энергии резко возрастет. Когда эти потребности в энергии увеличиваются, углеводы расщепляются на составляющие моносахариды, которые затем распределяются по всем живым клеткам организма. Глюкоза (С 6 H 12 O 6 ) является распространенным примером моносахаридов, используемых для производства энергии.

    Внутри клетки каждая молекула сахара расщепляется в ходе сложной серии химических реакций. Поскольку химическая энергия высвобождается из связей в моносахаридах, она используется для синтеза высокоэнергетических молекул аденозинтрифосфата (АТФ). АТФ является основной энергетической валютой всех клеток. Точно так же, как доллар используется в качестве валюты для покупки товаров, клетки используют молекулы АТФ для выполнения непосредственной работы и обеспечения химических реакций.

    Расщепление глюкозы в процессе метаболизма называется клеточным дыханием и может быть описано уравнением: другие типы организмов производят углеводы в процессе, называемом фотосинтезом. Во время фотосинтеза растения преобразуют энергию света в химическую энергию, превращая молекулы углекислого газа (CO 2 ) в молекулы сахара, такие как глюкоза. Поскольку этот процесс включает в себя создание связей для синтеза большой молекулы, для его продолжения требуется затрата энергии (света). Синтез глюкозы в результате фотосинтеза описывается этим уравнением (обратите внимание на то, что оно является обратным предыдущему уравнению):

    \[\ce{6CO2 + 6h3O + энергия → C6h22O6 + 6O2}\]

    В рамках химических процессов растений молекулы глюкозы могут соединяться с другими типами сахаров и превращаться в них. В растениях глюкоза хранится в виде крахмала, который может расщепляться обратно на глюкозу посредством клеточного дыхания для обеспечения АТФ.

    Ключевые моменты

    • Распад глюкозы, используемой живыми организмами для производства энергии, описывается уравнением: \[\ce{C6h22O6 + 6O2 → 6CO2 + 6h3O + энергия} \nonumber\]
    • Процесс фотосинтеза растений, используемый для синтеза глюкозы, описывается уравнением: \[\ce{6CO2 + 6h3O + энергия → C6h22O6 + 6O2} \nonumber\]
    • Потребляемая глюкоза используется для производства энергии в форме АТФ, которая используется для выполнения работы и запуска химических реакций в клетке.
    • Во время фотосинтеза растения преобразуют энергию света в химическую энергию, которая используется для построения молекул глюкозы.

    Основные термины

    • аденозинтрифосфат : многофункциональный нуклеозидтрифосфат, используемый в клетках в качестве кофермента, часто называемый «молекулярной единицей энергетической валюты» при внутриклеточном переносе энергии
    • глюкоза : простой моносахарид (сахар) с молекулярной формулой C6h22O6C6h22O6C6h22O6; это основной источник энергии для клеточного метаболизма

    Эта страница под названием 2.6.1: Метаболизм углеводов распространяется под лицензией CC BY-SA 4.0 и была создана, изменена и/или курирована Boundless.

    1. Наверх
      • Была ли эта статья полезной?
      1. Тип изделия
        Раздел или Страница
        Автор
        Безграничный
        Лицензия
        CC BY-SA
        Версия лицензии
        4,0
        Показать оглавление
        нет
      2. Теги
          На этой странице нет тегов.

      Каковы функции углеводов в растениях и животных?

      ••• a_namenko/iStock/GettyImages

      Обновлено 19 апреля 2018 г.

      Автор: Джесс Кролл

      Углеводы являются важным компонентом всей органической жизни на этой планете. И растения, и животные используют углеводы в качестве основного источника энергии, которая поддерживает функционирование организма на самом базовом уровне. Углеводы также удовлетворяют другие потребности, помогая синтезировать другие химические вещества и обеспечивая структуру клеток в организме.

      Источник энергии

      И растения, и животные используют углеводы в качестве источника энергии, необходимого для выполнения нормальных функций, таких как рост, движение и обмен веществ. Углеводы запасают энергию в форме крахмала, который, в зависимости от типа углеводов, содержит либо простые, либо сложные сахара. Сложные сахара, известные как полисахариды, дают стабильный запас энергии, в то время как более простые сахара, моносахариды и дисахариды обеспечивают более быстрый толчок перед растворением. Животные получают эти крахмалы с пищей, особенно из растительных продуктов, таких как зерновые и хлеб. Растения производят свои собственные углеводы посредством фотосинтеза, используя энергию, поглощаемую светом, для объединения углекислого газа и воды в более сложные органические молекулы.

      Биохимический синтез

      Переработка углеводов имеет побочный эффект, помогая перерабатывать другие химические вещества, присутствующие в организме. Когда углеводы расщепляются, они высвобождают атомы углерода. Они служат сырьем для большей части биохимии организма, поскольку затем углерод может соединяться с другими химическими веществами в организме. Сложная полисахаридная структура некоторых углеводов, для обработки которой требуется некоторое время, таким образом, помогает обеспечивать атомы углерода в течение длительного периода времени, позволяя функциям продолжаться регулярно.

      Структурная функция

      Различные углеводы, особенно в форме полисахаридов, способствуют построению клеточной структуры. В частности, у растений целлюлоза создает сплошную стену вокруг растительных клеток, придавая растению его структуру; углеводный обмен высвобождает химические вещества, которые помогают укрепить эту структуру. Поскольку у растений нет скелета или другой несущей вес формы, эти клеточные стенки обеспечивают каркас, благодаря которому растения могут стоять и вытягиваться. В некотором смысле именно переработка углеводов удерживает растения от падения или лежания на земле.

      Другие функции

      В дополнение к основным функциям углеводов различные полисахариды выполняют другие функции в органической жизни. Гепарин, сложный углевод, обычно используется в качестве инъекционного антикоагулянта, где расщепление сахаров помогает предотвратить образование тромбов. Углеводы также служат антигенами, веществами, запускающими выработку антител для иммунной системы. Другие углеводы обеспечивают гормоны, такие как фолликулостимулирующий гормон (ФСГ), который способствует овуляции, и гликопротеин, который способствует межклеточному взаимодействию, например, между антигенами и антителами.