Метаболизм анаболические катаболические и амфиболические реакции: Катаболические, анаболические, амфиболические пути

Катаболические, анаболические, амфиболические пути

Промежуточный метаболизм складывается из двух фаз: катаболизма и анаболизма. Катаболизм – это фаза, на которой происходит расщепление сложных органических молекул до более простых конечных продуктов. Углеводы, жиры и белки, поступившие извне с пищей или присутствующие в самой клетке в качестве запасных веществ, распадаются в серии последовательных реакций до таких соединений, как молочная кислота, СО2 и аммиак. Катаболические процессы сопровождаются высвобождением свободной энергии, заключенной в сложной структуре больших органических молекул. На определенных этапах соответствующих катаболических путей значительная часть свободной энергии запасается в форме высокоэнергетического соединения – АТР (благодаря сопряженным ферментативным реакциям). Часть ее запасается также в богатых энергией водородных атомах кофермента NАDН (NАDPН), находящегося в восстановленной форме (рис. 16.3).

Рис.

16.3. Энергетические взаимосвязи между катаболическим и анаболическим путями

На рис. 16.3. видно, что катаболические пути поставляют химическую энергию в форме АТP и NАDPH. Эта энергия используется на анаболических путях для биосинтеза макромолекул из небольших молекул – предшественников.

Ферментативное расщепление тех главных питательных веществ, которые служат клетке источником энергии, а именно углеводов, жиров и белков, совершается постепенно, т.е. через ряд последовательных ферментативных реакций. В аэробном катаболизме различают три главные стадии (рис. 16.4). На первой стадии макромолекулы клетки распадаются на свои основные «строительные блоки»: полисахариды ‒ до гексоз или пентоз, жиры ‒ до жирных кислот, глицерола и других компонентов, белки – до аминокислот.

Рис. 16.4. Три стадии катаболических превращений основных питательных веществ в клетке

На второй cтадии эти «строительные блоки» превращаются в один общий продукт ‒ ацетильную группу ацетил-СоА. На третьей стадии различные катаболические пути сливаются в один общий путь – цикл лимонной кислоты; в результате всех этих превращений образуются только три конечных продукта. Расщепление нуклеиновых кислот происходит также поэтапно, но на рис.16.4. этот процесс не показан, поскольку его вклад сравнительно невелик.

Все продукты, образовавшиеся на первой стадии катаболизма, на второй стадии превращаются в еще более простые соединения, число которых сравнительно невелико. Гексозы, пентозы и глицерол расщепляются до одного и того же трехуглеродного промежуточного продукта (пируватa), а затем – до единственной двухуглеродной формы ацетильной группы ацетилкоферментa А (ацетил-СоА). Аналогичное превращение претерпевают жирные кислоты и углеродные скелеты большей части аминокислот: их расщепление также завершается образованием ацетильных групп в форме ацетил-СоА. Таким образом, ацетил-СоА представляет собой общий конечный продукт второй стадии катаболизма.

На третьей стадии ацетильная группа ацетил-СоА вступает в цикл лимонной кислоты – общий конечный путь, на котором почти все виды клеточного «топлива» в конце концов, окисляются до двуокиси углерода. Конечными продуктами метаболизма являются также вода и аммиак (или другие азотсодержащие соединения).

Важно отметить, что катаболические пути сходятся, вливаясь на третьей стадии в общий путь – цикл лимонной кислоты. Если на первой стадии десятки и даже сотни различных белков расщепляются до аминокислот, которых насчитывается 20 видов, то уже на второй стадии из всех двадцати аминокислот образуются в основном только ацетил-СоА и аммиак, а на третьей стадии

ацетильные группы ацетил-СоА, окисляясь в цикле лимонной кислоты, превращаются только в два продукта – СО2 и Н2О. Точно так же многие полисахариды и дисахариды расщепляются на первой стадии до нескольких простых сахаров, которые на второй стадии превращаются в конечном счете в ацетил-СоА, а на третьей стадии – в СО2 и Н2О.

Анаболизм, называемый также биосинтезом, – та фаза метаболизма, в которой из малых молекул-предшественников, или «строительных блоков», синтезируются белки, нуклеиновые кислоты и другие макромолекулярные компоненты клеток. Поскольку биосинтез – процесс, в результате которого увеличиваются размеры молекул и усложняется их структура, он требует затраты свободной энергии. Источником энергии служит распад АТP до АDP и неорганического фосфата. Для биосинтеза некоторых клеточных компонентов требуются также богатые энергией водородные атомы, донором которых является NADPH (см. рис. 16.3).

Анаболизм, или биосинтез, начинающийся с малых молекул-предшественников, протекает также в три стадии. Синтез белков, например, начинается с образования -кетокислот и других предшественников. На второй стадии происходит аминирование -кетокислот в реакциях с донорами аминогрупп. Образуются -аминокислоты. На последней, завершающей, стадии анаболизма из аминокислот строятся полипептидные цепи и образуются различные белки. Сходным образом синтезируются липиды. Их синтез начинается с включения ацетильных групп в жирные кислоты и завершается сборкой различных липидных молекул из этих жирных кислот. В отличие от катаболизма для анаболизма характерно расхождение метаболических путей. Из сравнительно небольшого числа простых молекул-предшественников образуется в конечном счете весьма широкий набор разнообразных макромолекул. На центральных путях анаболизма имеется много ответвлений, что и дает в результате сотни различных клеточных компонентов.

Катаболический путь и соответствующий ему, но противоположный по направлению анаболический путь между данным предшественником и данным продуктом обычно не совпадают. Могут различаться и промежуточные продукты, и отдельные стадии этих путей. Однако хотя соответствующие катаболические и анаболические пути неидентичны, их связывает общая стадия (стадия III, см. рис. 16.4), которая включает цикл лимонной кислоты и некоторые вспомогательные ферментативные реакции. Эту общую стадию называют иногда амфuболuческой стадией метаболизма (от греч. «amfi»-оба), поскольку она выполняет двойную функцию. В катаболизме на этой стадии завершается распад сравнительно небольших молекул, образовавшихся на второй стадии, а в анаболизме ее роль заключается в поставке небольших молекул-предшественников для биосинтеза аминокислот, жирных кислот и углеводов.

Катаболические и анаболические реакции протекают одновременно, однако их скорости регулируются независимо, они часто локализованы в разных участках клетки. Регуляция метаболизма осуществляется тремя способами: 1) при помощи аллостерических ферментов, 2) при помощи гормонов; 3) путем регулирования синтеза ферментов.

26. Анаболизм и катаболизм, амфиболические пути. Охарактеризуйте цитратный цикл.

Гонский (стр. 245)

Обмен веществ: 1. Анаболизм — это совокупность процессов биосинтеза органических веществ, компонентов клетки и других структур органов и тканей. Анаболизм обеспечивает рост, развитие, обновление биологических структур, а также непрерывный ресинтез макроэргических соединений (АТФ) и их накопление. 2. Катаболизм — это совокупность процессов расщепления сложных молекул, компонентов клеток, органов и тканей до простых веществ (с использованием части из них в качестве предшественников биосинтеза) и до конечных продуктов метаболизма (с образованием макроэргических соединений).

Процессы анаболизма и катаболизма находятся в организме в состоянии динамического равновесия или временного превалирования одного из них. Преобладание анаболических процессов над катаболическими приводит к росту, накоплению массы тканей, а катаболических — к частичному разрушению тканевых структур, выделению энергии. Состояние равновесного или неравновесного соотношения анаболизма и катаболизма зависит от возраста. В детском возрасте преобладают процессы анаболизма, а в старческом — катаболизма. У взрослых людей эти процессы находятся в равновесии. Их соотношение зависит также от состояния здоровья, выполняемой человеком физической или психоэмоциональной деятельности.

Амфиболические пути выполняют сразу несколько функций, они находятся на <перекрестках> метаболизма и связывают анаболические и катаболические пути; примером может служить цикл лимонной кислоты .

Цитратный цикл=ЦТК=ВОПРОС 24

27.Общие принцины биологической термодинамики. Современные представления о механизме окислительного фосфорилирования.

Гонский (стр. 259-260)

Живые организмы с точки зрения термодинамики — открытые системы. Между системой и окружающей средой возможен обмен энергии, который происходит в соответствии с законами термодинамики.

1. Законы термодинамики

Первый закон — закон сохранения энергии; его можно сформулировать так: общая энергия системы и окружающей среды — величина постоянная.

Внутри рассматриваемой системы энергия может переходить от одной её части к другой или превращаться из одной формы в другую.

Второй закон гласит, что все физические и химические процессы в системе стремятся к необратимому переходу полезной энергии в хаотическую, неуправляемую форму. Мерой перехода или неупорядоченности системы служит величина, называемая энтропией (S), она достигает максимума, когда система приходит в истинное равновесие с окружающей средой.

2. Свободная энергия

Каждое органическое соединение, поступающее в организм извне или входящее в состав живой материи, обладает определённым запасом внутренней энергии (Е). Часть этой внутренней энергии может быть использована для совершения полезной работы. Такую энергию системы называют свободной энергией (G).

3.Эндергонические и экзергонические реакции

Направление химической реакции определяется значением ΔG. Если эта величина отрицательна, то реакция протекает самопроизвольно и сопровождается уменьшением свободной энергии. Такие реакции называют экзергоническими. Если при этом абсолютное значение ΔG велико, то реакция идёт практически до конца, и её можно рассматривать как необратимую.

Если ΔG положительно, то реакция будет протекать только при поступлении свободной энергии извне; такие реакции называют эндергоническими.

Если абсолютное значение ΔG велико, то система устойчива, и реакция в таком случае практически не осуществляется. При ΔG, равном нулю, система находится в равновесии

4. Сопряжение экзергонических и эндергонических процессов в организме

В биологических системах термодинамически невыгодные (эндергонические) реакции могут протекать лишь за счёт энергии экзергонических реакций. Такие реакции называют энергетически сопряжёнными. Многие из этих реакций происходят при участии аденозинтрифосфата (АТФ), играющего роль сопрягающего фактора.

Современные представления о механизме окислительного фосфорилирования

В настоящее время открыты все основные компоненты окислительного фосфорилирования, изучено их строение и свойства. Открыты основные принципы окислительного фосфорилирования, регуляция и механизмы некоторых стадий.

Механизм окислительного фосфорилирования

Окислительное фосфорилирование состоит из процессов окисленияифосфорилирования, которые между собой сопряжены.

Процесс окисления

Процесс окисления происходит при движении электронов по дыхательной цепи от субстратов тканевого дыхания на кислород. Дыхательная цепь окислительного фосфорилирования состоит из 4 белковых комплексов, встроенных во внутреннюю мембрану митохондрий и небольших подвижных молекул убихинона и цитохрома С, которые циркулируют в липидном слое мембраны между белковыми комплексами.

Комплекс I – НАДН2 дегидрогеназный комплекс – самый большой из дыхательных ферментных комплексов – имеет молекулярную массу свыше 800КДа, состоит из более 22 полипептидных цепей, в качестве коферментов содержит ФМН и 5 железо-серных (Fe2S2 и Fe4S4) белков.

Комплекс II – СДГ. В качестве коферментов содержит ФАД и железо-серный белок.

Комплекс III – Комплекс b-c(фермент QH2 ДГ), имеет молекулярную массу 500КДа, состоит из 8 полипептидных цепей, и вероятно существует в виде димера. Каждый мономер содержит 3 гема, связанных с цитохромами b562, b566, с1, и железо-серный белок.

Комплекс IV – Цитохромоксидазный комплекс имеет молекулярную массу 300КДа, состоит из 8 полипептидных цепей, существует в виде димера. Каждый мономер содержит 2 цитохрома (а и а3) и 2 атома меди.

Коэнзим Q (убихинон). Липид, радикал которого у млекопитающих образован 10 изопреноидными единицами (Q10). Убихинон переносит по 2Н+ и 2е.

Цитохром с. Периферический водорастворимый мембранный белок с массой 12,5КДа, содержит 1 полипептидную цепь из 100 АК, и молекулу гема.

Молекулярные соотношения между компонентами дыхательной цепи отличаются в разных тканях. Например, в миокарде, на 1 молекулу НАДНдегидрогеназного комплекса приходиться 3 молекулы комплекса b-c1, 7 молекул цитохромоксидазного комплекса, 9 молекул цитохрома С и 50 молекул убихинона.

Процесс фосфорилирования

Процесс фосфорилирования осуществляется АТФ-синтетазой (Н+-АТФ-аза), которая потребляет 40-45% свободной энергии, выделившейся при окислении. Н+-АТФ-аза интегральный белок внутренней мембраны митохондрий, она состоит из 2 белковых комплексов F0 и F1.

Гидрофобный комплекс F0 погружён в мембрану и служит основанием, которое фиксирует АТФ-синтазу в мембране. Он состоит из нескольких субъединиц, образующих канал, по которому протоны переносятся в матрикс.

Комплекс F1 выступает в митохондриальный матрикс. Он состоит из 9 субъединиц (3α, 3β, γ, δ, ε). Субъединицы α и β уложены попарно, образуя «головку»; между а- и β-субъединицами располагаются 3 активных центра, в которых происходит синтез АТФ; γ, δ, ε – субъединицы связывают комплекс F1, с F0.

АТФ-синтетаза обеспечивает обратимое взаимопревращение энергии электрохимического потенциала и энергии химических связей.

Электрохимический потенциал внутренней мембраны заставляет Н+ двигаться из межмебранного пространства по каналу АТФ-синтазы в матрикс митохондрий. При каждом переносе протонов через канал Fo энергия электрохимического потенциала расходуется на поворот стержня, в результате которого циклически изменяется конформация а- и β-субъединиц и все 3 активных центра, образованных парам α- и β-субъединиц, катализируют очередную фазу цикла: 1) связывание АДФ и Н3РО4; 2) образование фосфоангидридной связи АТФ; 3) освобождение конечного продукта АТФ.

Справка по биохимии

Студенты, нуждающиеся в помощи по биохимии, получат большую пользу от нашей интерактивной программы. Мы разбираем все ключевые элементы, чтобы вы могли получить адекватную помощь по биохимии. Имея под рукой обязательные концепции обучения и актуальные практические вопросы, вы получите много помощи по биохимии в кратчайшие сроки. Получите помощь сегодня с нашей обширной коллекцией необходимой информации по биохимии.

Если вы в настоящее время изучаете биохимию или собираетесь изучать ее в будущем, учебные инструменты Varsity Tutors’ Learning Tools предоставляют ряд ресурсов, которые помогут вам в подготовке к биохимии. Планируете ли вы сдавать предметный тест по биохимии университетского уровня или просто экзамен для класса по биохимии, вы можете укрепить свои знания по этому предмету с помощью помощи по изучению биохимии, доступной для вас на веб-сайте средств обучения.

Некоторым студентам изучение биохимии может показаться трудным и непосильным. Вам нужно будет получить много информации о биохимии, клеточной биологии, молекулярной биологии и генетике. К счастью, у вас есть бесплатный доступ к интерактивной учебной программе по биохимии через ресурс Learn by Concept на веб-сайте Varsity Tutors’ Learning Tools. По мере того, как вы перемещаетесь по бесплатным учебным материалам по биохимии, предоставленным вам через ресурс Learn by Concept, вы заметите, что весь материал разбит на категории и подразделы. Вы можете просмотреть ряд тем, таких как анаболические и катаболические пути, биохимические передачи, метаболизм, кинетика ферментов и макромолекулы. Инструмент обучения «Узнай по концепции» очень всеобъемлющий и охватывает широкий круг тем, связанных с биохимией.

По мере того, как вы будете перемещаться по материалам, предоставленным Learn by Concept, вам будет предложено несколько примеров вопросов по биохимии. Эти вопросы, представленные в формате с несколькими вариантами ответов, предназначены для оценки ваших знаний по важным понятиям биохимии. После ответа на каждый вопрос вы сможете проверить свой ответ и определить, не допустили ли вы каких-либо ошибок.

Learn by Concept не только задает вам вопросы по важному материалу, но и предоставляет важную информацию посредством подробных описаний. Эти описания помогают объяснить, почему предоставленный ответ является правильным, и помогают закрепить уже имеющиеся у вас знания. Используя помощь в изучении биохимии, вы можете точно определить области, над которыми вам нужно больше работать, и полностью настроить свой план изучения биохимии. Кроме того, вы можете узнать много важных формул, определений и словарных терминов, прочитав описания, приведенные в конце каждого примера вопроса по биохимии.

Ресурс Learn by Concept упрощает подготовку к биохимии. Вам предоставляется информация о ряде понятий, необходимых для понимания биохимии, таких как эукариоты и прокариоты, преобразование энергии, структуры связей, белки и нейротрансмиттеры. Если вы хотите просмотреть тест или выучить новый материал, полное использование бесплатных учебных материалов по биохимии в средствах обучения Varsity Tutors — идеальный способ дополнить вашу курсовую работу.