Восстановление мышц, сухожилий, связок в Москве, цены на процедуры
Различные повреждения мышц, сухожилий и связок чаще всего являются спутниками профессиональных спортсменов, но, как показывает практика, именно непрофессиональный подход к физическим упражнениям, некачественные спортивные снаряжения, обувь и даже простая неуклюжесть ничем не уступают. Помимо всего прочего с возрастом и при отсутствии необходимой повседневной физической нагрузки, правильного питания, насыщенного необходимыми макро и микроэлементами ткани мышц, связок и сухожилий имеют свойства истощаться, атрофироваться, становиться хрупкими.
К травмам связок, мышц и сухожилий относятся: растяжения, частичный или полный разрыв.
Клинические признаки при растяжении и разрыве связок сходны с признаками, наблюдаемыми при ушибах. Однако при повреждении связок характерны более острая, резкая боль в месте прикрепления связок, а также, более выраженное нарушение двигательной функции конечности, в области сустава наблюдается припухлость в результате излияния крови в мягкие ткани.
Разрывы сухожилий происходят при очень сильном и быстром сокращении мышц, при падении, подъеме тяжестей (в месте перехода мышц в сухожилие). Чаще всего повреждаются сухожилия кисти и пальцев, ахиллово сухожилие. Разрыв сухожилий сопровождается значительным расхождением их краев в результате сокращения мышц. При разрыве сухожилий выпадает сгибательная или разгибательная функция поврежденного сегмента конечности.
Кроме того, отмечается припухлость сухожилия и болезненность.Разрывы мышц возникают при быстром и сильном их сокращении (внезапное падение, подъем чрезмерной тяжести). Они могут быть полными и неполными. При полном разрыве происходит расхождение сократившихся концов. Разрывы мышц сопровождаются сильными болями в области повреждения, кровоизлиянием и резким ограничением движений. При полном разрыве ощупывание позволяет определить поперечный дефект мышцы в виде щели между разорванными концами.
Первая медицинская помощь при разрыве сухожилий и мышц: холод в первые часы на область травмы, создание покоя поврежденной конечности (иммобилизация подручными средствами), наложение давящей повязки.
Дальнейшие мероприятия проводятся в больнице. При неполных разрывах накладывают на несколько недель гипсовую повязку. Конечность сгибают так, чтобы максимально расслабились мышцы. После срастания сухожилий и мышц назначают массаж, лечебную физкультуру.
Мышцы глаза — строение и функции
Глазодвигательных мышц всего шесть, четыре из них прямые, две косые. Такое название мышцы получили из-за особенностей их хода в глазнице, а также прикрепления к яблоку глаза. Работу мышц контролируют три черепно-мозговые нерва: глазодвигательный, отводящий, блоковый. Каждое мышечное волокно данной группы мышц богато нервными окончаниями, что обеспечивает движениям особую точность и четкость.
Благодаря глазодвигательным мышцам обеспечивается вариабельность движений глазных яблок, включая однонаправленные — вверх, вправо и пр., и разнонаправленные — сведение глаз. Суть таких движений заключается в том, что за счет слаженной мышечной работы одинаковое изображение предмета попадает на одни участки сетчатки глаз – макулярную область, что обеспечивает хорошее зрение, дает ощущение пространственной глубины.
Строение мышц глаза
Принято выделять шесть глазодвигательных мышц, четыре из них идут в прямом направлении и называются прямыми: внутренняя, наружная, верхняя, нижняя. Две оставшиеся, имеют несколько косое направление хода, а также способ прикрепления к яблоку глаза, а потому получили название косых: верхняя и нижняя.
Все мышцы, исключая нижнюю косую, берут свое начало в соединительнотканном плотном кольце, которое окружает наружное отверстие в зрительном канале. В самом начале 5 мышц образуют некую мышечную воронку, где проходят зрительный нерв, кровеносные сосуды и нервы. После, верхняя косая мышца отклоняется постепенно кверху и кнутри, продвигаясь, к так называемому, блоку. Это место, где мышца трансформируется в сухожилие, переброшенное через петлю блока, отчего и меняет направление на косое, далее прикрепляясь в районе верхненаружного квадранта глазного яблока ниже верхней прямой мышцы. Нижняя косая мышца берет начало от нижневнутреннего глазничного края, проходит внизу нижней прямой мышцы кнаружи и кзади, и прикрепляется в районе нижненаружного квадранта глазного яблока.
В непосредственной близости от глазного яблока, у мышц появляется поверхностный слой – плотная капсула теноновой оболочки. Присоединение их к склере происходит на различном расстоянии от лимба. Особенно близко к лимбу из прямых мышц крепится внутренняя, а дальше остальных – верхняя прямая. Косые мышцы крепятся к яблоку глаза немного сзади экватора глазного яблока — середины его длинны.
Работу мышц, в большей степени, регулирует глазодвигательный нерв. Он управляет внутренней, верхней, нижней косой и нижней прямой мышцами. Функции наружной прямой мышцы координирует отводящий нерв, в то время, как верхней косой мышцей управляет блоковый нерв. Особенность подобной нервной регуляции в том, что одной веточкой двигательного нерва контролируется работа весьма малого числа мышечных волокон, что позволяет обеспечивать максимальную точность в движениях глаз.
Движения глазного яблока полностью зависят от особенностей крепления мышц. Зона прикрепления наружной и внутренней прямых мышц соответствует горизонтальной плоскости глазного яблока, что обеспечивает горизонтальные движения: поворот их к носу (сокращение внутренней прямой мышцы) либо к виску (сокращение наружной прямой мышцы).
Нижняя и верхняя прямые мышцы обеспечивают в основном вертикальные движения глаз, но из-за того, что линия прикрепления мышц локализована несколько косо в отношении линии лимба, то вместе с движением глаз по вертикали происходит и движение их кнутри.
Косые мышцы, сокращаясь вызывают более сложные движения, это связано с некими особенностями расположения мышц, а также их крепления к склере. Функция верхней косой мышцы – глаз опускать и поворачивать кнаружи, а нижней косой – поднимать его и отводить кнаружи.
Вместе с тем, верхняя и нижняя прямые мышцы и косые мышцы способны обеспечивать небольшие повороты глаза по часовой стрелке или против нее. Хорошая нервной регуляции, а также слаженная работа мышц глазного яблока дают возможность выполнять сложные движения: односторонние либо направленные в разные стороны, что обеспечивает объем и качество зрения, его бинокулярность.
Видео о строении мышц глаза
Методы диагностики
- Визуальное исследование подвижности глаз, с оценкой полноты движений при отслеживании перемещаемого объекта.
- Страбометрия – оценка угла отклонения глаза при косоглазии от средней линии.
- Тест с поочередным прикрыванием глаз, определяющий скрытое косоглазие – гетерофорию, а при явном косоглазии, определяющий его вид.
- Ультразвуковая диагностика, для определения поражений глазодвигательных мышц, локализованных поблизости к глазному яблоку.
- Магнитно-резонансная томография, компьютерная томография – выявление поражений глазодвигательных мышцы на всем протяжении.
Симптоматика заболеваний
- Двоение – состояние может быть обусловлено явным косоглазием или выраженным скрытым косоглазии.
- Нистагм – возникает из-за нарушения способности к фиксации объектов взглядом.
- Нарушение содружественного движения глаз, ограничение подвижности пораженного глаза.
- Боль, усиливающаяся при движении глаз.
- Опущение века.
- Нарушение бинокулярного зрения.
Болезни, затрагивающие мышцы глаза
- Косоглазие.
- Птоз.
- Воспаление мышц (миозит).
- Лагофтальм.
- Блефароспазм.
- Гетерофория.
- Нарушение рефракции (миопия, гиперметропия).
Физиология, мышцы — StatPearls — Книжная полка NCBI
Книжная полка NCBI. Служба Национальной медицинской библиотеки, Национальных институтов здоровья.
StatPearls [Интернет]. Остров сокровищ (Флорида): StatPearls Publishing; 2022 янв.
StatPearls [Интернет].
Показать подробности
Критерий поиска
Рэйчел Э. Ното; Логан Ливитт; Мэри Энн Иденс.
Информация об авторе и организациях
Последнее обновление: 8 мая 2022 г.
Введение
В организме человека есть три основных типа мышц: скелетные, сердечные и гладкие мышцы. Каждый тип мышц имеет уникальные клеточные компоненты, физиологию, специфические функции и патологию. Скелетная мышца – это орган, который в первую очередь контролирует движение и осанку. Сердечная мышца охватывает сердце, которое поддерживает жизнь человеческого тела. Гладкие мышцы присутствуют в желудочно-кишечном тракте, репродуктивной, мочевыделительной, сосудистой и дыхательной системах.
Клеточный
Скелетные мышцы составляют примерно 40% от общей массы тела человека. В его состав входит множество отдельных волокон, связанных вместе в мышечное веретено; это придает скелетным мышцам поперечно-полосатый вид. Отдельное мышечное волокно состоит в основном из актиновых и миозиновых волокон, покрытых клеточной мембраной (сарколеммой). Эти волокна являются функциональной единицей органа, приводящей к сокращению и расслаблению. Существует две основные классификации скелетных мышц: тип I (медленные окислительные) и тип II (быстросокращающиеся). Огромное разнообразие строения скелетных мышц приводит к различиям в скорости и продолжительности сокращений в разных группах мышц в зависимости от их конкретной функции.[1]
Сердечная мышца или миокард представляет собой непроизвольную поперечно-полосатую мышцу, которая окружает камеры сердца. Он состоит из отдельных кардиомиоцитов, которые по строению сходны со скелетными мышцами. Каждый кардиомиоцит содержит цитоскелетные и сократительные элементы, все из которых соединены вставочными дисками. Это комплексы с высокой адгезией, которые позволяют клеткам сердечной мышцы получать быструю электрическую передачу и сокращаться как единое целое.[2] Сердечная мышца также содержит специализированные клетки кардиостимулятора, которые лежат в миокарде. Эти клетки позволяют сердечной ткани деполяризоваться без внешних раздражителей.
Клетки гладких мышц также состоят из актиновых и миозиновых волокон; тем не менее они расположены листами, а не веретенами , что придает этому типу мышц гладкий вид. Эти клетки присутствуют в стенках многих органов, таких как легкие, желудочно-кишечный тракт, репродуктивные органы, кровеносные сосуды и даже кожа.[4]
Функция
Скелетные, сердечные или гладкие мышцы человеческого тела функционируют для создания силы и движения. Скелетные мышцы поддерживают кости, сохраняя осанку, а также контролируя произвольные движения. Скелетные мышцы также участвуют в обмене и накоплении энергии. Сердечная мышца продвигает кровь и обеспечивает правильную оксигенацию и поддержание каждой клетки, из которой состоит тело человека. Гладкие мышцы расположены по всему телу и используют силу сокращения для сокращения и продвижения различного содержимого через просвет многих систем органов, в которых они задействованы.
Механизм
Потенциалы действия от нервных волокон центральной нервной системы деполяризуют мышцы по длине сарколеммы к самым внутренним волокнам через систему поперечных канальцев (Т-трубочек). Потенциал действия отвечает дигидропиридиновому рецептору на Т-трубочке; это действует как датчик напряжения, позволяющий высвобождать кальций. Впоследствии кальций активирует рианодиновые рецепторы в саркоплазматическом ретикулуме, высвобождая еще больше кальция. Затем большее количество кальция может связываться с белком тропонином, расположенным на актиновых филаментах. Комплекс кальций-тропонин вытесняет белок тропомиозин из активного участка актиновой нити и обеспечивает связывание миозина и сокращение мышц. Аденозинтрифосфат (АТФ) необходим для отсоединения миозина от актиновых филаментов и обеспечения мышечной релаксации.[1]
Подобно скелетным мышцам, сердечная мышца активируется за счет связывания кальция с тропонином в актиновых филаментах кардиомиоцитов. Затем это связывание удаляет тропомиозин и обеспечивает связывание миозина с актиновыми филаментами и возможное сокращение. Существенное различие между сердечной и скелетной мышцей заключается в автоматизме кардиомиоцитов. Специализированные клетки кардиостимулятора, расположенные в синоатриальном (СА) узле, отвечают за сокращение сердечной мышцы. Они активируют потенциалы действия, которые обеспечивают приток натрия и калия и высвобождение кальция из саркоплазматического ретикулума. Затем сердечная мышца может сокращаться как единая скоординированная единица.[5]
Сокращение гладкой мускулатуры не находится под произвольным контролем и осуществляется за счет вегетативной регуляции взаимодействия кальция и кальмодулина. Сокращение начинается за счет изменения потенциала действия или активации механических рецепторов растяжения в плазматической мембране. Внутриклеточный кальций увеличивается и соединяется с белком кальмодулином. Именно этот комплекс активирует киназу легкой цепи миозина (MLC) для фосфорилирования и образования поперечных мостиков между миозином и актином, что приводит к сокращению мышц. Некоторые гладкие мышцы сохраняют тонус, что обусловлено постоянным уровнем фосфорилирования при отсутствии внешних потенциалов. Снижение уровня внутриклеточного кальция вызывает расслабление.[4]
Клиническое значение
Мышечная дистрофия — это прогрессирующая генетическая миопатия, которая приводит к дегенерации нормальной анатомии и физиологии клеток скелетных мышц. Полное или частичное отсутствие белка дистрофина является патологическим механизмом мышечной дистрофии Беккера и Дюшенна. Дистрофин представляет собой белок, связанный с филаментами скелетных мышц. Дистрофин обеспечивает структуру и поддержку сарколеммы монофиламента. Недостаток белка дистрофина приводит к повреждению поддерживающей сарколеммы, слабости и возможной атрофии здоровых мышечных волокон. Мышечная дистрофия Дюшенна поражает до 1 из 3600 мальчиков, что делает ее самой распространенной среди всех типов мышечных дистрофий. У многих с Дюшенном низкая ожидаемая продолжительность жизни, потому что в настоящее время нет доступного лечения. Лечение этих расстройств носит исключительно поддерживающий характер. Наиболее частой причиной смерти этих людей является сердечно-легочная недостаточность.[6]
Саркопения – это потеря мышечной массы и атрофия, связанные со старением. Это происходит в результате уменьшения размера мышц и уменьшения числа сателлитных клеток, количества митохондрий и эластичности. Саркопения наблюдается все чаще с возрастом, но не является универсальной. Саркопения зависит от степени физической активности, пола и расы. Это может быть связано с потерей мышечной силы и проблемами с неподвижностью, такими как падения, которые обычно наблюдаются у стареющего населения. [1]
Гладкомышечные клетки выстилают всю сосудистую систему человека. Они проявляют пластичность в ответ на повреждение сосудов. Именно эта пластичность имеет значение в болезненном процессе атеросклероза. Зрелые гладкомышечные клетки участвуют в сокращении и тонусе сосудистой системы. Холестериновая нагрузка явно увеличивает нагрузку на эндотелиальные клетки, что приводит к повреждению сосудов. Это повреждение переводит гладкую мускулатуру сосудов из неактивного сократительного состояния в состояние провоспалительной реакции. В результате происходит пролиферация и ремоделирование гладкомышечных клеток; это приводит к образованию фиброзной капсулы, наблюдаемой при атеросклерозе.[7]
Гипертрофическая обструктивная кардиомиопатия (ГОКМ) представляет собой аутосомно-доминантное заболевание, вызываемое генетическими вариантами, кодирующими часть сократительного элемента кардиомиоцита. Эти мутации обеспечивают повышенную чувствительность миофиламентов к кальцию, утолщение межжелудочковой перегородки и, в конечном итоге, обструкцию кровотока. Хотя симптомы обструкции обычно бессимптомны, они могут проявляться болью в груди при физической нагрузке, тахикардией с одышкой, обмороками и внезапной сердечной смертью. HOCM является наиболее часто наследуемым сердечным заболеванием с распространенностью 1 на 500. Это основная причина внезапной смерти у молодых людей, и в настоящее время это неизлечимое заболевание.[8]
Контрольные вопросы
Доступ к бесплатным вопросам с несколькими вариантами ответов по этой теме.
Комментарий к этой статье.
Ссылки
- 1.
Frontera WR, Ochala J. Скелетные мышцы: краткий обзор структуры и функции. Кальциф ткани Int. 2015 март; 96(3):183-95. [PubMed: 25294644]
- 2.
Roth GM, Bader DM, Pfaltzgraff ER. Выделение и физиологический анализ кардиомиоцитов мыши. J Vis Exp. 2014 Сен 07;(91):e51109. [Бесплатная статья PMC: PMC4828048] [PubMed: 25225886]
- 3.
Burkhard S, van Eif V, Garric L, Christoffels VM, Bakkers J. Об эволюции кардиостимулятора. J Cardiovasc Dev Dis. 27 апреля 2017 г.; 4(2) [бесплатная статья PMC: PMC5715705] [PubMed: 29367536]
- 4.
Webb RC. Сокращение и расслабление гладкой мускулатуры. Adv Physiol Educ. 2003 декабря; 27 (1-4): 201-6. [PubMed: 14627618]
- 5.
Севриева И., Ноулз А.С., Кампуракис Т., Сун Ю.Б. Регуляторный домен тропонина динамически перемещается во время активации сердечной мышцы. Дж Мол Селл Кардиол. 2014 окт.; 75:181-7. [Бесплатная статья PMC: PMC4169182] [PubMed: 25101951]
- 6.
Ши ПБ. Мышечные дистрофии и другие генетические миопатии. Нейрол клин. 2013 ноябрь;31(4):1009-29. [PubMed: 24176421]
- 7.
Чистяков Д.А., Орехов АН, Бобрышев Ю.В. Гладкомышечные клетки сосудов при атеросклерозе. Acta Physiol (Oxf). 2015 май; 214(1):33-50. [PubMed: 25677529]
- 8.
Robinson P, Liu X, Sparrow A, Patel S, Zhang YH, Casadei B, Watkins H, Redwood C. Мутации гипертрофической кардиомиопатии увеличивают миофиламент Ca 2+ буферизуют, изменяют внутриклеточную обработку Ca 2+ и стимулируют Ca 2+ -зависимую передачу сигналов. Дж. Биол. Хим. 06 июля 2018 г .; 293 (27): 10487-10499. [Бесплатная статья PMC: PMC6036197] [PubMed: 29760186]
Copyright © 2022, StatPearls Publishing LLC.
Эта книга распространяется на условиях Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) ( http://creativecommons.org/licenses/by-nc-nd/4.0/ ), что позволяет другим распространять произведение при условии, что статья не изменена и не используется в коммерческих целях. Вам не требуется получать разрешение на распространение этой статьи при условии, что вы указываете автора и журнал.
Bookshelf ID: NBK532258PMID: 30335291
- PubReader
- Print View
- Cite this Page
In this Page
Массовая загрузка
Информация по теме
Похожие статьи в PubMed
- Гистология мышц. [StatPearls. 2022]
- Физиология скелетных мышц. [StatPearls. 2022]
- Обзор роли глобинов в физиологии сердечно-сосудистой системы. [Physiol Rev. 2022]
- Физиология гладкой мускулатуры. [StatPearls. 2022]
- Митохондриальное дыхание сердечной, скелетной и гладкой мускулатуры: все ли митохондрии устроены одинаково?[Am J Physiol Heart Circ Physio…]
См. обзоры… См. все…
Последние действия
ClearTurn OffTurn On
Ваша активность в Интернете пуста.
Запись активности отключена.
Включить запись
Подробнее…
Скелетные мышцы | Определение и функция
- Развлечения и поп-культура
- География и путешествия
- Здоровье и медицина
- Образ жизни и социальные вопросы
- Литература
- Философия и религия
- Политика, право и правительство
- Наука
- Спорт и отдых
- Технология
- Изобразительное искусство
- Всемирная история
- В этот день в истории
- Викторины
- Подкасты
- Словарь
- Биографии
- Резюме
- Популярные вопросы
- Обзор недели
- Инфографика
- Демистификация
- Списки
- #WTFact
- Товарищи
- Галереи изображений
- Прожектор
- Один хороший факт
- Развлечения и поп-культура
- География и путешествия
- Здоровье и медицина
- Образ жизни и социальные вопросы
- Литература
- Философия и религия
- Политика, право и правительство
- Наука
- Спорт и отдых
- Технология
- Изобразительное искусство
- Всемирная история
- Britannica объясняет
В этих видеороликах Britannica объясняет различные темы и отвечает на часто задаваемые вопросы. - Britannica Classics
Посмотрите эти ретро-видео из архивов Encyclopedia Britannica. - #WTFact Видео
В #WTFact Britannica делится некоторыми из самых странных фактов, которые мы можем найти. - На этот раз в истории
В этих видеороликах узнайте, что произошло в этом месяце (или любом другом месяце!) в истории. - Demystified Videos
В Demystified у Britannica есть все ответы на ваши животрепещущие вопросы.
- Студенческий портал
Britannica — это главный ресурс для учащихся по ключевым школьным предметам, таким как история, государственное управление, литература и т. д. - Портал COVID-19
Хотя этот глобальный кризис в области здравоохранения продолжает развиваться, может быть полезно обратиться к прошлым пандемиям, чтобы лучше понять, как реагировать сегодня. - 100 Женщины
Британника празднует столетие Девятнадцатой поправки, выделяя суфражисток и политиков, творящих историю.