Что такое жиры липиды: Состав, свойства и функции липидов — урок. Биология, 9 класс.

§ 4. Классификация и функции липидов

Глава II. ЛИПИДЫ

§ 4. КЛАССИФИКАЦИЯ И ФУНКЦИИ ЛИПИДОВ

Липиды представляют собой неоднородную группу химических соединений, нерастворимых в воде, но хорошо растворимых в неполярных органических растворителях: хлороформе, эфире, ацетоне, бензоле и др., т.е. общим их свойством является  гидрофобность (гидро – вода, фобия – боязнь). Из-за большого разнообразия липидов дать более точное определение им невозможно. Липиды в большинстве случаев являются сложными эфирами жирных кислот и какого-либо спирта. Выделяют следующие классы липидов: триацилглицерины, или жиры, фосфолипиды, гликолипиды, стероиды, воска, терпены. Различают две категории липидов – омыляемые и неомыляемые. К омыляемым относятся вещества, содержащие сложноэфирную связь (воска, триацилглицерины, фосфолипиды и др.). К неомыляемым относятся стероиды, терпены.

 

Триацилглицерины, или жиры

Триацилглицерины являются сложными эфирами трехатомного спирта глицерина

и жирных (высших карбоновых) кислот. Общая формула  жирных кислот имеет вид: R-COOH, где R – углеводородный радикал. Природные жирные кислоты содержат от 4 до 24 атомов углерода. В качестве примера приведем формулу одной из наиболее распространенной в жирах стеариновой кислоты:

CH3-CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2-COOH

В общем виде молекулу триацилгицерина можно записать так:

Если в состав триациоглицерина входят остатки различных кислот (R R2  R3), то центральный атом углерода в остатке глицерина становится хиральным.

Триацилглицерины неполярны и вследствие этого практически нерастворимы в воде. Основная функция триацилглицеринов – запасание энергии. При окислении1 гжира выделяется 39 кДж энергии. Триацилглицерины накапливаются в жировой ткани, которая, кроме депонирования жира, выполняет термоизолирующую функцию и  защищает органы от механических повреждений.   Более подробную информацию о жирах и жирных кислотах вы найдете в следующем параграфе. 

 

Интересно знать! Жир, которым заполнен горб верблюда, служит, в первую очередь, не источником энергии, а источником воды, образующейся при его окислении.


Фосфолипиды

Фосфолипиды содержат  гидрофобную и гидрофильную области и поэтому обладают амфифильнымы свойствами, т.е. они способны растворяться в неполярных растворителях и образовывать стойкие эмульсии с водой.

Фосфолипиды в зависимости от наличия в их составе спиртов глицерина и сфингозина делятся на глицерофосфолипиды и сфингофосфолипиды.

 

Глицерофосфолипиды

В основе строения молекулы глицерофосфолипидов лежит фосфатидная кислота, образованная глицерином, двумя жирными и фосфорной кислотами:

В молекулах глицерофосфолипидов к фосфатидной кислоте сложноэфирной связью присоединена НО-содержащая полярная молекула. Формулу глицерофосфолипидов можно представить так:

где Х – остаток НО-содержащей полярной молекулы (полярная группировка). Названия фосфолипидов образуются в зависимости от наличия в их составе той или иной полярной группировки. Глицерофосфолипиды, содержащие в качестве полярной группировки остаток этаноламина, 

HO-CH2-CH2-NH2

носят название фосфатидилэтаноламинов, остаток холина 

– фосфатидилхолинов, серина 

– фосфатидилсеринов. 

Формула фосфатидилэтаноламина выглядит так:

Глицерофосфолипиды отличаются друг от друга не только полярными группами, но и остатками жирных кислот. В их состав входят как насыщенные (состоящие обычно из 16 – 18  атомов углерода), так и ненасыщенные (содержащие чаще 16 – 18  атомов углерода и 1 – 4  двойные связи) жирные кислоты.

Сфингофосфолипиды

Сфингофосфолипиды по составу сходны с глицерофосфолипидами, но вместо глицерина содержат аминоспирт сфингозин:

или дигидросфингазин:

Наиболее распространенными сфингофосфолипидами являются сфингомиелины. Они образованы сфингозином, холином, жирной кислотой и фосфорной кислотой:

Молекулы как глицерофосфолипидов,  так и сфингофосфолипидов состоят из полярной головы (образована фосфорной кислотой и полярной группировкой) и двух углеводородных неполярных хвостов (рис.1). У глицерофосфолипидов оба неполярных хвоста являются радикалами жирных кислот, у сфингофосфолипидов – один хвост является радикалом жирной кислоты, другой – углеводородной цепочкой спирта сфингазина. 

Рис. 1. Схематическое изображение молекулы фосфолипида.

При встряхивании в воде фосфолипиды спонтанно формируют мицеллы, в которых неполярные хвосты собираются внутри частицы, а полярные головы располагаются на ее поверхности, взаимодействуя с молекулами воды (рис. 2а). Фосфолипиды способны образовывать также  бислои (рис. 2б) и липосомы – замкнутые пузырьки, окруженные непрерывным бислоем (рис. 2в).

Рис. 2. Структуры, образуемые фосфолипидами.

Способность фосфолипидов, образовывать бислой, лежит в основе формирования клеточных мембран. 

 

Гликолипиды

Гликолипиды содержат в своем составе углеводный компонент. К ним относятся гликосфинголипиды, содержащие, кроме углевода спирт, сфингозин и остаток жирной кислоты:

Они так же, как и фосфолипиды, состоят из полярной головы и двух неполярных хвостов. Гликолипиды располагаются на внешнем слое мембраны, являются составной частью рецепторов, обеспечивают взаимодействие клеток. Их особенно много в нервной ткани.

 

Стероиды

Стероиды являются производными циклопентанпергидрофенантрена (рис. 3). Один из важнейших представителей стероидов – холестерин. В организме он встречается как в свободном состоянии, так и в связанном, образуя сложные эфиры с жирными кислотами (рис. 3). В свободном виде холестерин входит в состав мембран и липопротеинов крови. Сложные эфиры холестерина являются его запасной формой. Холестерин является предшественником всех остальных стероидов: половых гормонов (тестостерон, эстрадиол и др.), гормонов коры надпочечников (кортикостерон и др.), желчных кислот (дезоксихолевая и др.), витамина D (рис. 3).

Интересно знать! В организме взрослого человека содержится около 140 г холестерина, больше всего его находится в нервной ткани и надпочечниках. Ежедневно в организм человека поступает 0,3 – 0,5 г холестерина, а синтезируется  – до 1 г.

 

 

Воска

Воска – это сложные эфиры, образованные длинноцепочечными жирными кислотами (число атомов углерода 14 – 36) и длинноцепочечными одноатомными спиртами (число атомов углерода 16 – 22). В качестве примера рассмотрим формулу воска, образованного олеиновым спиртом и олеиновой кислотой:

Воска выполняют главным образом защитную функцию, находясь на поверхности листьев, стеблей, плодов, семян они защищают ткани от высыхания и проникновения микробов. Они покрывают шерсть и перья животных и птиц, предохраняя их от намокания. Пчелиный воск служит строительным материалом для пчел при создании сот. У планктона воск служит основной формой запасания энергии.

 

Терпены

В основе терпеновых соединений лежат изопреновые остатки:

К терпенам относятся эфирные масла, смоляные кислоты, каучук, каротины, витамин А, сквален. В качестве примера приведем формулу сквалена: 

Сквален является основным компонентом секрета сальных желез.

Органические вещества клетки. Липиды — что это, определение и ответ

К липидам относятся жиры и жироподобные вещества. Это органические соединения с различной структурой, но общими свойствами: не растворимы в воде, но растворимы в органических растворителях (эфир, бензин и т. п.). Липиды образованы атомами трех элементов: углерода, кислорода и водорода. Выделяют следующие группы липидов:

Триглицериды (жиры) – соединения жирных высокомолекулярных кислот и трехатомного спирта глицерина. Жиры не растворяются в воде — они гидрофобны.

Жиры могут быть насыщенными и ненасыщенными (в зависимости от типа жирных кислот, входящих в состав). Насыщенные (предельные) содержат только одинарные связи между атомами углерода. В то время как ненасыщенные кислоты содержат одну и более двойных ковалентных связей.

Ненасыщенные жиры имеют более низкие температуры плавления, чем насыщенные, поэтому при обычных условиях представляют собой жидкие масла, а не твёрдые вещества. Растительные жиры — жидкие при комнатной температуре. Животные жиры при комнатной температуре твердые.

Фосфолипиды – соединения, похожие на триглицериды, но одна жирная кислота замещена фосфорным остатком.

Таким образом, в составе молекул всех фосфолипидов имеются гидрофобная (остатки жирных кислот) и гидрофильная (фосфорная кислота и присоединенные к ней группы) части, поэтому такие молекулы могут контактировать как с полярными, так и с неполярными растворителями (такие вещества называют амфифильными).

Амфифильность — наличие в молекуле жиров гидрофобных и гидрофильных частей.

Особенности фосфолипидов:

Фосфолипиды образуют двойной слой, или липидный бислой цитоплазматической мембраны клеток

● Гидрофильные «головки» обращены наружу

● Гидрофобные «хвосты» спрятаны вовнутрь мембраны

Стероиды — вещества животного или, реже, растительного происхождения, обладающие высокой биологической активностью. К ним относится полициклический спирт холестерол (чаще называемый холестерин) и его производные.

Кроме того, к липидам относятся воска.

Воска – сложные эфиры высших спиртов и жирных кислот. В состав молекул липидов, составляющих воски (в отличие от жиров, имеющих сходное строение), не входит глицерин.

Они покрывают кожу, шерсть, перья животных, смягчая их и защищая их от воды. Также из восков пчёлы строят соты.

Функции липидов:

Энергетическая. В ходе расщепления 1 г жиров до СО2 и Н2О освобождается большое количество энергии — 38,9 кДж (9,3 ккал).

Запасающая. Липиды могут использоваться также в качестве источника воды (при окислении 1 г жира образуется более 1 г воды)

Строительная (структурная). Благодаря амфифильности в воде и водных растворах фосфолипиды самопроизвольно формируют протяженные почти плоские двойные слои, в которых гидрофобные слои смотрят друг на друга, а гидрофильные головы – в водную среду. Такие слои являются основой всех биологических мембран. Таким образом, одной из основных функцией фосфолипидов является структурная функция – формирование биологических мембран.

Фосфолипидный бислой клеточной мембраны

Терморегулирующая. Большинство липидов обладают низкой теплопроводностью и у некоторых животных (тюлени, киты) он откладывается в подкожной жировой ткани, образуя слой толщиной до 1 м.

Защитная. Например, восковой налет на различных частях растений препятствует излишнему испарению воды.

Регуляторная. Многие производные липидов (например, стероидные гормоны, витамины A, D, E) участвуют в обменных процессах, происходящих в организме.

Липид | Определение, структура, примеры, функции, типы и факты

липидная структура

См. все материалы

Связанные темы:
стероидный препарат изопреноид простагландин липопротеин фосфолипид

Просмотреть весь связанный контент →

Популярные вопросы

Что такое липид?

Липид представляет собой любое из различных органических соединений, нерастворимых в воде. Они включают жиры, воски, масла, гормоны и определенные компоненты мембран и функционируют как молекулы-аккумуляторы энергии и химические мессенджеры. Наряду с белками и углеводами липиды являются одним из основных структурных компонентов живых клеток.

Почему липиды важны?

Липиды представляют собой разнообразную группу соединений, выполняющих множество различных функций. На клеточном уровне фосфолипиды и холестерин являются одними из основных компонентов мембран, отделяющих клетку от окружающей среды. Гормоны липидного происхождения, известные как стероидные гормоны, являются важными химическими мессенджерами и включают тестостерон и эстрогены. На уровне организма триглицериды, хранящиеся в жировых клетках, служат депо для хранения энергии, а также обеспечивают теплоизоляцию.

Что такое липидные рафты?

Липидные рафты – это возможные области клеточной мембраны, содержащие высокие концентрации холестерина и гликосфинголипидов. Существование липидных рафтов окончательно не установлено, хотя многие исследователи подозревают, что такие рафты действительно существуют и могут играть роль в текучести мембран, межклеточных коммуникациях и инфицировании вирусами.

;

; Один тип липидов, триглицериды, секвестрируются в виде жира в жировых клетках, которые служат в качестве хранилища энергии для организмов, а также обеспечивают теплоизоляцию. Некоторые липиды, такие как стероидные гормоны, служат химическими посредниками между клетками, тканями и органами, а другие передают сигналы между биохимическими системами внутри одной клетки. Мембраны клеток и органеллы (структуры внутри клеток) представляют собой микроскопически тонкие структуры, образованные из двух слоев молекул фосфолипидов. Мембраны функционируют, чтобы отделить отдельные клетки от их окружения и разделить внутреннюю часть клетки на структуры, которые выполняют специальные функции. Эта компартментализирующая функция настолько важна, что мембраны и образующие их липиды, должно быть, сыграли важную роль в происхождении самой жизни.

Вода — это биологическая среда, вещество, делающее возможной жизнь, и почти все молекулярные компоненты живых клеток, будь то животные, растения или микроорганизмы, растворимы в воде.

Такие молекулы, как белки, нуклеиновые кислоты и углеводы, обладают сродством к воде и называются гидрофильными («водолюбивыми»). Однако липиды гидрофобны («водобоязненные»). Некоторые липиды являются амфипатическими — часть их структуры гидрофильна, а другая часть, обычно более крупная, гидрофобна. Амфипатические липиды проявляют уникальное поведение в воде: они спонтанно образуют упорядоченные молекулярные агрегаты, причем их гидрофильные концы находятся снаружи, в контакте с водой, а их гидрофобные части находятся внутри, экранированные от воды. Это свойство является ключом к их роли в качестве основных компонентов клеточных и органелл мембран.

Хотя биологические липиды не являются крупными макромолекулярными полимерами (например, белки, нуклеиновые кислоты и полисахариды), многие из них образуются путем химического связывания нескольких небольших составляющих молекул. Многие из этих молекулярных строительных блоков сходны или гомологичны по структуре. Гомологии позволяют разделить липиды на несколько основных групп: жирные кислоты, производные жирных кислот, холестерин и его производные и липопротеины.

В этой статье рассматриваются основные группы и объясняется, как эти молекулы функционируют как молекулы-аккумуляторы энергии, химические мессенджеры и структурные компоненты клеток.

Жирные кислоты редко встречаются в природе в виде свободных молекул, но обычно встречаются в виде компонентов многих сложных молекул липидов, таких как жиры (соединения для хранения энергии) и фосфолипиды (основные липидные компоненты клеточных мембран). В этом разделе описывается структура и физико-химические свойства жирных кислот. Это также объясняет, как живые организмы получают жирные кислоты как из своего рациона, так и в результате метаболического расщепления накопленных жиров.

Структура

Биологические жирные кислоты, представители класса соединений, известных как карбоновые кислоты, состоят из углеводородной цепи с одной концевой карбоксильной группой (COOH). Фрагмент карбоновой кислоты, не включающий гидроксильную (ОН) группу, называется ацильной группой. В физиологических условиях в воде эта кислая группа обычно теряет ион водорода (H + ) с образованием отрицательно заряженной карбоксилатной группы (COO ). Большинство биологических жирных кислот содержат четное число атомов углерода, потому что путь биосинтеза, общий для всех организмов, включает химическое связывание двухуглеродных единиц (хотя в некоторых организмах встречаются относительно небольшие количества жирных кислот с нечетным числом). Хотя молекула в целом нерастворима в воде благодаря своей гидрофобной углеводородной цепи, отрицательно заряженный карбоксилат является гидрофильным. Эта распространенная форма биологических липидов, которая содержит хорошо разделенные гидрофобные и гидрофильные части, называется амфипатической.

В дополнение к углеводородам с прямой цепью жирные кислоты могут также содержать пары атомов углерода, связанные одной или несколькими двойными связями, метильные разветвления или трехуглеродное циклопропановое кольцо вблизи центра углеродной цепи.

Оформите подписку Britannica Premium и получите доступ к эксклюзивному контенту.

Подписаться сейчас

Липид | Определение, структура, примеры, функции, типы и факты

липидная структура

Просмотреть все СМИ

Связанные темы:
стероидный препарат изопреноид простагландин липопротеин фосфолипид

Просмотреть весь связанный контент →

Популярные вопросы

Что такое липид?

Липид представляет собой любое из различных органических соединений, нерастворимых в воде. Они включают жиры, воски, масла, гормоны и определенные компоненты мембран и функционируют как молекулы-аккумуляторы энергии и химические мессенджеры. Наряду с белками и углеводами липиды являются одним из основных структурных компонентов живых клеток.

Почему липиды важны?

Липиды представляют собой разнообразную группу соединений, выполняющих множество различных функций. На клеточном уровне фосфолипиды и холестерин являются одними из основных компонентов мембран, отделяющих клетку от окружающей среды. Гормоны липидного происхождения, известные как стероидные гормоны, являются важными химическими мессенджерами и включают тестостерон и эстрогены. На уровне организма триглицериды, хранящиеся в жировых клетках, служат депо для хранения энергии, а также обеспечивают теплоизоляцию.

Что такое липидные рафты?

Липидные рафты – это возможные области клеточной мембраны, содержащие высокие концентрации холестерина и гликосфинголипидов. Существование липидных рафтов окончательно не установлено, хотя многие исследователи подозревают, что такие рафты действительно существуют и могут играть роль в текучести мембран, межклеточных коммуникациях и инфицировании вирусами.

;

; Один тип липидов, триглицериды, секвестрируются в виде жира в жировых клетках, которые служат в качестве хранилища энергии для организмов, а также обеспечивают теплоизоляцию. Некоторые липиды, такие как стероидные гормоны, служат химическими посредниками между клетками, тканями и органами, а другие передают сигналы между биохимическими системами внутри одной клетки. Мембраны клеток и органеллы (структуры внутри клеток) представляют собой микроскопически тонкие структуры, образованные из двух слоев молекул фосфолипидов. Мембраны функционируют, чтобы отделить отдельные клетки от их окружения и разделить внутреннюю часть клетки на структуры, которые выполняют специальные функции. Эта компартментализирующая функция настолько важна, что мембраны и образующие их липиды, должно быть, сыграли важную роль в происхождении самой жизни.

Вода — это биологическая среда, вещество, делающее возможной жизнь, и почти все молекулярные компоненты живых клеток, будь то животные, растения или микроорганизмы, растворимы в воде. Такие молекулы, как белки, нуклеиновые кислоты и углеводы, обладают сродством к воде и называются гидрофильными («водолюбивыми»). Однако липиды гидрофобны («водобоязненные»). Некоторые липиды являются амфипатическими — часть их структуры гидрофильна, а другая часть, обычно более крупная, гидрофобна. Амфипатические липиды проявляют уникальное поведение в воде: они спонтанно образуют упорядоченные молекулярные агрегаты, причем их гидрофильные концы находятся снаружи, в контакте с водой, а их гидрофобные части находятся внутри, экранированные от воды. Это свойство является ключом к их роли в качестве основных компонентов клеточных и органелл мембран.

Хотя биологические липиды не являются крупными макромолекулярными полимерами (например, белки, нуклеиновые кислоты и полисахариды), многие из них образуются путем химического связывания нескольких небольших составляющих молекул. Многие из этих молекулярных строительных блоков сходны или гомологичны по структуре. Гомологии позволяют разделить липиды на несколько основных групп: жирные кислоты, производные жирных кислот, холестерин и его производные и липопротеины. В этой статье рассматриваются основные группы и объясняется, как эти молекулы функционируют как молекулы-аккумуляторы энергии, химические мессенджеры и структурные компоненты клеток.

Жирные кислоты редко встречаются в природе в виде свободных молекул, но обычно встречаются в виде компонентов многих сложных молекул липидов, таких как жиры (соединения для хранения энергии) и фосфолипиды (основные липидные компоненты клеточных мембран). В этом разделе описывается структура и физико-химические свойства жирных кислот. Это также объясняет, как живые организмы получают жирные кислоты как из своего рациона, так и в результате метаболического расщепления накопленных жиров.

Структура

Биологические жирные кислоты, представители класса соединений, известных как карбоновые кислоты, состоят из углеводородной цепи с одной концевой карбоксильной группой (COOH).