Гликоген Распространение в природе
Гликоген – резервный полисахарид. Содержится практически во всех тканях животных и человека. Одним из наиболее богатых источников гликогена являются печень и мышцы человека и млекопитающих, содержащие ~2 — 8% и ~2% этого полисахарида соответственно. Гликоген обнаружен также в мышцах беспозвоночных и в некоторых микроорганизмах (бактериях, грибах, дрожжах и др.). Во всех случаях гликоген выполняет функцию запасного высокомолекулярного углеводорода и участвует в качестве источника энергии в процессах обмена веществ.
В клетках дрожжей гликоген часто откладывается в виде мелких гранул. В тканях животных гликоген присутствует в виде частиц, называемых гликогеносомами. Наиболее крупные из них-частицы, диаметром 100 — 200 нм, собраны из-частиц, диаметром 30 — 40 нм. Встречаются также еще более мелкие
Получение
Гликоген из тканей биомассы животного происхождения можно выделить экстракцией кипящим 60%-ным водным раствором щелочи, водой или разбавленным холодным раствором трихлоруксусной кислоты. В последнем случае получаются препараты гликогена с высоким значением молекулярной массы и с узким молекулярно-массовым распределением. Поскольку трихлоруксусная кислота осаждает белки, в получаемом экстракте присутствуют гликоген и некоторые низкомолекулярные соединения. В дальнейшем раствор очищают различными способами: диализом, хроматографическими методами и др. Гликоген из очищенного экстракта получают избирательным осаждением этиловым спиртом. Полученный препарат гликогена повторно растворяют в трифторуксусной кислоте и переосаждают спиртом. Получаемый в данных условиях гликоген частично деструктирует. Нативный гликоген выделяют из биомассы экстракцией водой на холоду в присутствии солей Hg.
Химическое строение и молекулярная структура
Гликоген – гомополисахарид разветвленного строения (рис.1). Линейные главная и боковые цепи макромолекул гликогена построены из звеньев —D-глюкопиранозы, связанных-(14)-гликозидными связями(рис.1 а). Боковые цепи присоединены к основной макромолекулярной цепи-(16)-гликозидными связями(рис.1 а).
Гликоген по химической структуре и пространственному строению близок к полисахариду крахмала – амилопектину. Однако, амилопектин является резервным полисахаридом растений, а гликоген – животных. Считается также, что макромолекулы гликогена имеют бóльшее количество боковых ответвлений в сравнении с амилопектином.
(а) |
(б) |
(в) |
Рис.1.Структурная формула фрагмента макромолекулы гликогена (а). Схематическое изображение структуры разветвленной молекулы гликогена (б, в). Структурная формула (а) соответствует участку макромолекулы гликогена, выделенной квадратом (б). |
Внутренняя часть молекулы гликогена более разветвлена, чем наружная (рис.1 б, в). На каждые 10 — 12 звеньев остатков -D-глюкопиранозы основной цепи приходится в среднем 1 боковая цепь. В боковых цепях на 3 — 4 звена имеется 1 точка разветвления.
Гликоген, строение — Справочник химика 21
Гликоген, или животный крахмал, по составу и строению подобен крахмалу, накапливается в тканях, особенно в печени [c.173]Гликоген еще более разветвлен, чем амилопектин. Строение молекулы гликогена можно изобразить схемой, приведенной на рис. 45, а строение части молекулы, обведенной ва этой схеме четырехугольником, — формулой, приведенной ниже [c.712]
Гликоген имеет сходное строение, но его молекула более компактна и сильнее разветвлена. В. Строение точки ветвления цепи. [c.313]
Гликоген является резервным полисахаридом животных организмов. Он представляет собой разветвленный полисахарид, по строению близкий к амилопектину. Основная цепь его состоит из ангидридов глюкопиранозы, связанных а-глюкозидными связями в положении — -4, и содержит большое число ответвлений, присоединенных к основной цепи в положении 1- 6. Молекулярная масса гликогена колеблется от 300 ООО до 3 ООО ООО. [c.344]
По составу и строению гликоген подобен крахмалу и при гидролизе образует О-глюкозу но цепи его молекул, построенные из а-глюкопиранозных остатков, сильно разветвлены (еще больше, чем в амилопектине). Число циклических глюкозных звеньев в молекулах гликогена во много раз больше, чем в крахмале (6000— 24 ООО), и молекулярная масса его значительно выше (1 ООО ООО— 4 ООО ООО).
Амилопектин — сильно разветвленный полисахарид крахмала, построенный из 600—6000 остатков а О-глюко-зы, связанных между собой а—1,4-, а в местах ветвлений —1,6-глюкозидными связями. Молекулярная масса амилопектина 100 000— 1000 ООО, но может достигать 20-10 и даже — 5-10 . По строению амилопектин похож иа гликоген. [c.32]
Сходное с амилопектином строение имеет гликоген (животный крахмал). [c.310]
Сходное строение с амилопектином имеет животный полисахарид гликоген, разветвленность которого больше, чем амилопектина На рис. 15.7 схематично изображена структура амилопектина, где белыми кружками показаны остатки а-О-глюкопиранозы, связанные [c.405]
Классическими методами анализа, например метилированием, показано, что гликоген состоит из а-(1- 4)-связанных остатков О-глюкозы, и имеет а-(1,4,6)-связанные точки ветвления. Применение амилолитических ферментов для определения тонкой структуры гликогена показало, что он имеет ветвистое строение (см. рис. 26.3.5, й), причем каждая цепь состоит из 12 остатков D-глю-козы. Столь малая длина цепей в соединении, имеющем молекулярную массу порядка 10 —10 , свидетельствует о высокоразветвленной структуре, вследствие чего молекула гликогена поглощает Иод в еще меньшем количестве, чем молекула амилопектина. Области густого ветвления, устойчивые к действию а-амилазы, распределены по молекуле статистически [160]. С доступностью паракристаллического гликогена стало возможным применение физических методов для более детального изучения его строения 161]. Нахождению в природе, выделению, строению и ферментативному расщеплению гликогена посвящены обзоры [162—164].
Строение гликогена. Гликоген, запасной полисахарид животных организмов, очень сходен с амилопектином. В отличие от последнего он легко растворим в воде и не образует клейстера. С йодом он дает красно-коричневую окраску (причем некоторые гликогены вовсе пе окрашиваются). [c.316]
Гликоген. По строению он напоминает амилопектин, но степень разветвления значительно выше. Гликоген накапливается в организмах животных (преимущественно в печени и мышцах) как резервное вещество. Гтикоген легко расщепляется с образованием глюкозы и снабжает ею организм животных при физических нагрузках и в промежутках между приемами пишц. Кстати, одной из основных причин проблемы г ,чности людей является го, что ткани способны накапливать гликоген ишь в ограниченном количестве. Как только содержание гликогена на ( кт ткани достигнет 50…60 г, он перестает синтезироваться, а глюкоза испо ппьзуется уже щя образования жиров, [c.265]
Полисахариды гомо- и гетсрополисахарнды. Крахмал, химическое строение, химические и физико-химические свойства. Реакция с иодом. Расщепление крахмала. Пектиновые вещества, амилоза и амилопектин. Биологическая роль крахмала. Инулин, гликоген (животный крахмал). Целлюлоза как полимер глюкозы. Отличие целлюлозы от крахмала. Физические и химические свойства целлюлозы. [c.248]
Гликоген, или животный крахмал, имеет такое же разветвленное строение и такую же химическую структуру, как и амилопектин, но отличается от него морфологией макромолекулы. У амилопектина расстояния (средние) между ветвлениями составляют в средней части макромолекулы 8—9 глюкозных звеньев, а на ее внешней поверхности ( бахрома внешних групп) 15—18. У гликогена внутренние расстояния между ветвлениями составляют в среднем 3 глюкозных цикла, а внешняя бахрома 6—7. [c.35]
Результаты этих определений дают при исследовании неизвестного полисахарида лишь самое общее представление о его структуре. Измерение расхода окислителя в данном случае имеет смысл главным образом для установления конца реакции. Однако в случае полисахаридов хорошо изученного типа оно может давать дополнительные сведения о строении. Так, например, измерение расхода перйодата и образования муравьиной кислоты служит наиболее быстрым и удобным способом определения степени разветвления амилопектинов и гликогенов, полученных из различных биологических объектов .
УГЛЕВОДЫ (глюциды, глициды)—важнейший класс органических соединений, распространенных в природе, состав которых соответствует общей формуле С (НзО) — По химическому строению У.— альдегидо- или кетоноспирты. Различают простые У.— моносахариды (сахара), например глюкоза, фруктоза, и сложные—полисахариды, которые делят на низкомолекулярные У.— дисахариды (сахароза, лактоза и др.) и высокомолекулярные, такие, например, как крахмал, клетчатка, гликоген. Характерным для У. является то, что моносахариды не гидролизуют, а молекулы полисахаридов при гидролизе расщепляются на две молекулы (дисахариды) или на большее число молекул (крахмал, клетчатка) моносахаридов. У. имеют огромное значение в обмене веществ организмов, являясь главным источником [c.255]
Очень близок по строению к амилопектину важнейший гомополиса-ларид животного происхождения — гликоген. Гликоген играет в животном организме роль резервного полисахарида. При избытке углеводов пище он, образуясь из избыточной глюкозы, откладывается в печени. Напротив, при недостатке углеводов в пище он распадается, и образующаяся при этом глюкоза поступает в кровь. [c.159]
Гликоген, запасный полисахарид животных, накапливающийся в печени, мышечных тканях, имеет молекулярную массу 1-15 млн и очень напоминает по строению амилопектин, но более разветвлен Разветвления, построенные по 1-6 типам, повторяются через каждые 8-16 остатков глюкозы Гликоген запасается в тканях в ограниченном количестве (50-60 г на 1 кг ткани) По достижении этого предела гликоген перестает синтезироваться, а глюкоза далее переводится животным организмом в жиры По этой причине избыточное потребление углеводов приводит к ожирению Строение крахмалоподобных сахаридов показано схематически на рис 23 2
Гликоген содержится в мускульной ткани и в пече1Ш. Он также принадлежит к числу резервных полисахаридов. Его относительная молекулярная масса составляет 5—15 миллионов. Гликоген по своему химическому строению напоминает крахмал, но имеет существенно большее число разветвлений, чем амилопектин. Разветвления повторяются через каждые 8—16 остатков глюкозы. [c.643]
В гликогене молекулы построены по типу амилопектина, но обладают более короткими и частыми боковыми ветвями. Молекулярный вес гликогена составляет 1—4 млн. Строение и свойства гликогена подробно изучали Степаненко, Е. Розенфельд и др. [c.240]
Молекулярный вес гликогена порядка 10 . Поэтому принимают, что гликоген имеет строение, аналогичное строению амилопектина, но более разветвленное, включающее более короткие цепи. Ферментативное исследование подтверждает это строение. [c.317]
Биосинтез П. в живой клетке идет сложными путями, различными для разных П. характерным для этого процесса является ферментативный перенос гли-козильных остатков с участием уриди-новых коферментов. Синтез П., близких по строению гликогену, удалось осуществить вне организма, исходя из фосфорилированной глюкозы с применением системы специфич. ферментов. П.— основной источник углеводов в питании. [c.20]
Гликоген — это эквивалент крахмала, синтезируем ый в животном организме, т. е. это тоже резервный полисахарид, молекулы которого построены из больного числа остатков а-глюкозы. Содержится гликоген главным образом в печени и мышцах. По своему строению он очень 6.ЛИЧ0К амилопектину. [c.626]
Для иллюстрации рассмотрим строение одного из простейших представителей такого класса — амилопек-тина, полисахарида, который вместе с амилозой составляет крахмал. Аналогично амилопектину устроен животный крахмал (гликоген). Все цепи этих полисахаридов — и основная, и боковые, и разветвления в разветвлениях и т. д. — построены однотипно и состоят из а-1- 4-связан-ных остатков В-глюкопиранозы. Все узлы разветвлений — точки ветвления — построены также единообразно боковые цепи присоединены к другой цепи гликозидной связью в положение 6 остатка глюкозы (см. схему, с. 37). [c.36]
Гликоген но своему строению и свойствам очен , близок к компоненту крахмала — амилонектину. Он состоит из остатков — >-глюкозы, связанных в положении 1,4, а в местах разветвления — 1,6. [c.216]
Гликоген — еще один очень важный природный гомополисахарид, по строению сходный с крахмалом, поэтому его часто называют животный крахмал . Гликоген — разветвленная молекула полиглюкозы, аналогичная амилопектиновой части крахмала, но гликоген сильнее разветвлен и точки ветвления в нем встречаются в два-три раза чаще, чем в крахмале, а именно через каждые 8-10 остатков вдоль а-(1- 4)-цепи. В амилопектине крахмала точки ветвления встречаются через каждые 25-30 остатков. [c.69]
На рис. 2.12 изображена схема строения амилозы, состоящей из повторяющихся мальтозных (диглюкозных) единиц. Цепи амилопектина, в отличие от амилозы, разветвлены. Ту же роль, которую крахмал играет в растениях, в организмах животных выполняет гликоген, также построенный из глюкозных единиц, но имеющий сильно разветвленную структуру. Целлюлоза построена из повторяющихся единиц целлобиозы. [c.92]
Примером такого рода полисахаридов может служить гликоген из дрожжей (Sa haromy es erevisiae) При кислотном гидролизе его получена глюкоза с выходом 96% определение молекулярного веса ультрацентрифугированием дает значения порядка 2-10 . Результаты метилирования, периодатного окисления, частичного кислотного гидролиза и ферментативного гидролиза под действием а-амилазы и 3-амилазы указывают на высокоразветвленную структуру гликогена со средней длиной цепи 11 —13 остатков глюкозы внешние цепи содержат в среднем восемь остатков глюкозы. Близкие по строению полисахариды выделены из микроорганизмов самых различных классов. [c.545]
Гликоген. В животных организмах этот полисахари является структурным и функциональным аналого растительного крахмала. По строению подобен амиле X. пектину, но имеет еще большее разветвление цепе [c.416]
Аналогично гликогену в животных организмах, в растениях гакую же роль резервного полисахарида выполняет амилопектин, имеющий менее разветвленное строение. Это связано с тем, что в растениях значительно медленнее протекают метаболические про-.цессы и не требуется быстрый приток энергии, как это иногда бывает необходимо животному организму (стрессовые ситуации, физическое или умственное напряжение). [c.417]
Полисахариды по строению делятся на линейные и разветвленные, а по составу — на гетерополисахариды, которые состоят из различных моносахаридов, и гомополисахариды, которые состоят из фрагментов одного и того же моносахарида. В случае глюкозы такие гомополисахариды называют глюканами крахмал, гликоген, целлюлоза. [c.494]
Гликоген (животный крахмал) имеет тот же состав, что и крахмал растений по строению подобен анилопектину (25 000 90 000 глюкозных остатков). Гидролизуется аналогично крахмалу. Гликоген выполняет ту же функцию в живых организмах, что крахмал в растениях. Все жизненные процессы сопровождаются и энергетически обеспечиваются биологическим расщеплениеи этого полисахарида, приводящим к образованию (+)-молочной кислоты. Гликоген содержится во всех клетках живого организма, наиболее богаты им печень и мышцы. [c.511]
Инсулин — белково-пептидный гормон, вырабатываемый островками поджелудочной железы. Является регулятором углеводного обмена в органиа-ме — стимулирует усвоение глюкозы и ее превращение в гликоген, при введении в организм понижает содержание сахара в крови. Молекула инсулина включает не менее 707 атомов и состоит из двух пептидных цепей, включающих 21 и 30 остатков аминокислот, цепи соединены двумя мостиками —8—5—, а один дисульфидный мостик имеется в более короткой цепи. Молекулы инсулина склонны к агрегации (с обраэованц от димеров до гексамеров) в присутствии ионов 2п +. Инсулин — первый белок, строение которого было расшифровано и воспроизведено в лаборатории. Используется для лечения диабета (сахарной болезни), [c.557]
Целлюлоза является линейным, нераз-ветвленным гомополисахаридом, состоящим из 10000 и более остатков В-глю-козы, связанных друг с другом (1 -+4)-гликозидными связями в этом отношении она сходна с амилозой и линейными участками цепей гликогена. о между этими полисахаридами существует одно очень важное различие в целлюлозе (1 4)-связи имеют р-кон-фйгурацию, а в амилозе, амилопектине и гликогене-а-конфигурадию. Это, казалось бы, незначительное различие в строении целлюлозы и амилозы приводит к весьма существенным различиям в их свойствах (рис. 11-16). Благодаря геометрическим особенностям а(1 -> — 4)-связей лийейные участки полимерных цепей в молекулах гликогена и крахмала стремятся принять скрученную, спиральную конформацию, что способствует образованию плотных гранул, которые и обнаруживаются в больщин-стве животных и растительных клеток. [c.315]
где содержится, каковы функции и структурная формула, как проходит синтез и распад (мобилизация), какова биологическая роль и свойства в печени и мышцах?
Спортивные достижения зависят от ряда факторов: построения циклов в тренировочном процессе, восстановления и отдыха, питания и так далее. Если рассматривать детально последний пункт, то отдельного внимания заслуживает гликоген. Каждый спортсмен должен знать о его влиянии на организм и продуктивность тренировки. Тема кажется сложной? Давайте разбираться вместе!
Источники энергии для организма человека – это белок, углевод и жиры. Когда речь заходит об углеводах, то это вызывает опасения, особенно среди худеющих и атлетов на сушке. Связано это с тем, что избыточное употребление макроэлемента приводит к набору лишнего веса. Но действительно ли все так плохо?
В статье мы рассмотрим:
- что такое гликоген и его влияние на организм и тренировки;
- места накопления и способы пополнения запасов;
- влияние гликогена на набор мышечной массы и жиросжигание.
Что такое гликоген
Гликоген — это вид сложных углеводов, полисахарид, в составе содержится несколько молекул глюкозы. Грубо говоря, это нейтрализованный сахар в чистом виде, не попадающий в кровь до возникновения потребности. Процесс работает в обе стороны:
- после приема пищи глюкоза попадает в кровь, а излишки запасаются в виде гликогена;
- во время физической нагрузки уровень глюкозы падает, организм начинает расщеплять гликоген при помощи ферментов, возвращая уровень глюкозы в норму.
Полисахарид путают с гормоном глюкогеном, который вырабатывается в поджелудочной железе и вместе с инсулином поддерживает концентрацию глюкозы в крови.
Когда заканчивается гликоген, тогда «горит» жир?
Получила интересный вопрос – «А что если была силовая тренировка на верх тела (грудь/спина/руки…), то есть ноги были не задействованы, соответственно запас гликогена в них остался, а после силовой ты пошла на беговую дорожку, то жир «гореть» не будет, т.к. в ногах остался гликоген, и именно его будет использовать организм, так?»
Что такое гликоген?
Гликоген – это форма хранения углеводов в организме. В основном гликоген запасается в печени и мышцах. Печень ответственна за большое количество важных функций, в т.ч. и за углеводный обмен. Концентрация гликогена в печени выше, чем в мышцах (10% против 2% от веса тканей органов), но все же больше гликогена содержится именно в мышцах, так как их масса больше. Кстати, другие ткани и органы нашего тела – мозг, почки, сердце и т.д., так же содержат запасы гликогена, но ученые не пришли к окончательному выводу, относительно их функций. Гликоген в печени и скелетных мышцах выполняют разные функции.
Гликоген из печени преимущественно необходим для регуляции уровня глюкозы в крови в период голодания, дефицита калорий.
Гликоген из мышц обеспечивает глюкозой мышечные волокна во время сокращения мышц.
Соответственно, содержание гликогена в печени уменьшается во время голодания, дефицита калорий, а содержание мышечного гликогена уменьшается во время тренировки в «рабочих» мышцах. Но только ли в «рабочих» мышцах?
Гликоген и работа мышц.
Было проведено несколько исследований (в конце статьи оставлю ссылку на полный обзор всех источников), в ходе которых была проведена биопсия скелетных мышц после выполнения интенсивной физической нагрузки у группы добровольцев. Выявлено, что в «рабочих» мышцах уровень гликогена значительно снижается во время выполнения упражнений, в то время как уровень гликогена в неактивных мышцах остается неизменным. Кстати, выносливость напрямую связана с уровнями гликогена в мышцах, усталость развивается, когда истощается запас гликогена в активных мышцах (поэтому не забываем есть перед тренировкой часа за 2, чтобы показать максимальный результат).
Так значит жир не будет «гореть» на беговой дорожке после тренировки верха, так как в мышцах ног останется запас гликогена? На самом деле будет, и вот почему:
- В статье «О количестве подходов, повторений и весах… Или как растут мышцы?», я уже затрагивала тему о типах мышечных волокон (МВ) и их энергообеспечении. Так вот при аэробной работе (когда используется кислород) окислительные МВ используют жир в качестве источника энергии, как пример – тот самый бег на пульсе жиросжигания (когда при беге дыхание ровное, нет отдышки, даже можно разговаривать и при этом не задыхаться).
- Гликогеновый запас по калориям не настолько емок, как запас триглицеридов (жиров). А повышенная концентрация свободных жирных кислот в плазме крови способствует сохранению гликогена скелетных мышц во время тренировок.
В подтверждение вот еще одно исследование: Vukovich M.D., Costill D.L., Hickey M.S., Trappe S.W., Cole K.J., Fink W.J. Effect of fat emulsion infusion and fat feeding on muscle glycogen utilization during cycle exercise. J. Appl. Physiol.(1985) 1993
Участников эксперимента разделили на две группы. Первой группе приготовили перед тренировкой насыщенный жирными кислотами прием пищи (взбитые сливки, 90 гр.), вторая группа съела легкий завтрак (где были в основном одни углеводы и только 1 гр. жира). После часового кардио были сделаны замеры уровня гликогена в активных мышцах. Та группа, которая перед тренировкой получила насыщенный жирными кислотами прием пищи, потратила на 26% меньше гликогена в активных мышцах.
Ниже иллюстрация того, как через определенное время (с момента начала тренировки) организм теряет запасы гликогена и все больше переходит на жир, как источник энергии:
Триглицериды (жиры) в плазме крови (в кровь эти жирные кислоты попадают после еды, либо высвобождаются во время отдыха из подкожного жира, но при условии дефицита калорий) и триглицериды, запасенные мышечной тканью (наподобие гликогена) – основные источники энергообеспечения мышц жирными кислотами. То есть, подкожный жир напрямую не горит на беговой дорожке, горит тот жир, что вы съели перед тренировкой, либо тот жир, который уже находится в мышцах, а попадает он туда из подкожного, только при условии дефицита калорий. И еще, чем более тренированный человек, тем больше его мышцы способны «сжечь» запасов жиров и углеводов за тренировку.
А что если не есть углеводы, чтобы запасы гликогена были минимальны и быстрее «горел» жир?
Как я уже писала, мышцы – это не единственный потребитель углеводов, тот же мозг ежедневно требует около 75-100 гр. глюкозы, вынь да полож (а еще есть сердце, печень, жировая ткань, да, да даже она потребляет углеводы). И если мышцам, а надо понимать, что они не первые в очереди за углеводами, не хватает глюкозы для ресинтеза гликогена, то «включается» процесс неоглюкогенез (опять сложное слово!), то есть мышцы начинают разрушаться. Поэтому советую не опускать значение потребление углеводов ниже 100 гр. в сутки.
Итог.
Что ж, в итоге жир будет «гореть» на беговой дорожке после тренировки верха, даже несмотря на то, что в мышцах ног останется запас гликогена. Но сначала «сгорят» триглицериды в мышцах, плазме крови, потом вы придете домой, закончите день с небольшим дефицитом калорий (а не съедите все что попадет под руку со словами — «а что, после тренировки все ж можно…»), уснете, организм поймет, что образовалась нехватка энергии, метаболизирует из подкожного жира триглицериды, которые попадут сначала в кровь, а потом в мышцы. Все. Осталось повторить цикл еще разок, два или три… ну вы поняли
Урок 11. полисахариды. крахмал. целлюлоза — Химия — 10 класс
Химия, 10 класс
Урок № 11. Полисахариды. Крахмал. Целлюлоза
Перечень вопросов, рассматриваемых в теме: урок посвящён полисахаридам, их строению, свойствам, знакомству с самыми распространёнными полисахаридами: крахмалом и целлюлозой, их структурой, свойствами, нахождением в природе и ролью в жизни человека.
Глоссарий
Полисахариды – это высокомолекулярные углеводы, состоящие из большого числа молекул моносахаридов.
Реакция поликонденсации – процесс образования макромолекул, в котором выделяется низкомолекулярный побочный продукт.
Крахмал – продукт поликонденсации молекул альфа-глюкозы.
Целлюлоза – продукт поликонденсации молекул бета-глюкозы.
Реакция этерификации – процесс взаимодействия органического соединения, содержащего спиртовые функциональные группы, с кислотой, в результате которого образуется сложный эфир и вода.
Амилоза – линейные макромолекулы, состоящие из остатков альфа-глюкозы, входят в состав крахмала.
Амилопектин – разветвлённые макромолекулы, состоящие из остатков альфа-глюкозы, входят в состав крахмала.
Ацетатное волокно – искусственное волокно, получаемое на основе триацетата целлюлозы.
Основная литература: Рудзитис, Г. Е., Фельдман, Ф. Г. Химия. 10 класс. Базовый уровень; учебник/ Г. Е. Рудзитис, Ф. Г, Фельдман – М.: Просвещение, 2018. – 224 с.
Дополнительная литература:
1. Рябов, М.А. Сборник задач, упражнений и тестов по химии. К учебникам Г.Е. Рудзитис, Ф.Г. Фельдман «Химия. 10 класс» и «Химия. 11 класс»: учебное пособие / М.А. Рябов. – М.: Экзамен. – 2013. – 256 с.
2. Рудзитис, Г.Е. Химия. 10 класс : учебное пособие для общеобразовательных организаций. Углублённый уровень / Г.Е. Рудзитис, Ф.Г. Фельдман. – М. : Просвещение. – 2018. – 352 с.
Открытые электронные ресурсы:
- Единое окно доступа к информационным ресурсам [Электронный ресурс]. М. 2005 – 2018. URL: http://window.edu.ru/ (дата обращения: 01.06.2018).
ТЕОРЕТИЧЕСКИЙ МАТЕРИАЛ ДЛЯ САМОСТОЯТЕЛЬНОГО ИЗУЧЕНИЯ
Полисахариды – это высокомолекулярные углеводы, состоящие из большого числа молекул моносахаридов.
Картофельный и кукурузный крахмал, гликоген, целлюлоза, входящая в состав древесины и хлопка, хитин, из которого построены панцири насекомых – это всё полисахариды.
Образование молекул полисахаридов
Крахмал состоит из макромолекул, которые образованы большим количеством молекул альфа-глюкозы.
При соединении двух молекул альфа-глюкозы образуется побочный продукт – молекула воды.
Реакция образования макромолекул, в которой выделяется низкомолекулярный побочный продукт, называется реакцией поликонденсации.
В результате реакции поликонденсации из молекул альфа-глюкозы: могут образовываться линейные макромолекулы.
Линейная макромолекула, образованная из молекул альфа-глюкозы, называется амилоза.
В результате поликонденсации молекул альфа-глюкозы могут образовываться и разветвленные макромолекулы, которые называются амилопектин.
Смесь амилозы и амилопектина называется крахмалом.
Макромолекулы целлюлозы образуются из молекул бета-глюкозы.
Образование целлюлозы также происходит в результате реакции поликонденсации. При этом образуется побочный низкомолекулярный продукт – вода.
Цепь молекулы целлюлозы образуется в результате последовательного присоединения всё новых и новых молекул бета-глюкозы.
Макромолекулы целлюлозы, в отличие от крахмала, имеют линейное строение.
Физические и химические свойства крахмала и целлюлозы
Крахмал – белый аморфный порошок без вкуса и запаха. Крахмал не растворяется в холодной воде, а в горячей воде набухает и образует клейстер.
Целлюлоза – белое твёрдое нерастворимое в воде вещество без вкуса и запаха.
При добавлении в качестве катализатора небольшого количества кислоты в раствор крахмала происходит его гидролиз. Макромолекулы распадаются на молекулы меньших размеров (декстрин, мальтоза), конечным продуктом реакции гидролиза является альфа-глюкоза.
Механизм реакции следующий: положительно заряженный ион водорода притягивается к кислородному мостику между двумя остатками альфа-глюкозы, соединяется с атомом кислорода. В результате связь разрывается. На атоме углерода второго фрагмента молекулы крахмала образуется положительный заряд, который притягивает к себе молекулу воды. Кислород в молекуле воды присоединяется к атому углерода, а один из ионов водорода отрывается от молекулы воды. В результате образуются молекулы декстрина, которые по такому же механизму гидролизуются с образованием молекул мальтозы. Конечным продуктом гидролиза крахмала являются молекулы альфа-глюкозы.
Если к раствору крахмала добавить каплю раствора йода, появляется синяя окраска. Это качественная реакция на крахмал.
При действии на целлюлозу уксусной кислоты образуются ацетатные эфиры целлюлозы.
Нахождение крахмала и целлюлозы в природе
Крахмал и целлюлоза широко распространены в природе.
Крахмал входит в состав многих растений. В пшенице содержание крахмала составляет 64 %, в рисе – 75 %, в кукурузе – 70 % и в картофеле – 24 %.
Целлюлоза – основной материал клеток растений, она придает прочность стеблям и веткам. Больше всего – 98 % целлюлозы в хлопковом волокне, до 85 % её содержится в льняном волокне. Древесина содержит до 50 % целлюлозы, а в соломе её 30 %.
Роль крахмала и целлюлозы в жизни человека
Полисахариды играют важную роль в жизни человека. Во-первых, полисахариды – это источник углеводов. Из полисахаридов делают бумагу, синтетические волокна и ткани (вискозный, ацетатный, медно-аммиачный шёлк, искусственный мех), фото- и киноплёнку, и даже взрывчатые вещества (бездымный порох).
ПРИМЕРЫ И РАЗБОР РЕШЕНИЙ ЗАДАЧ ТРЕНИРОВОЧНОГО МОДУЛЯ
1. Решение задачи на расчёт количества готового продукта, изготовленного из полисахаридов.
Условие задачи: Сколько бумаги (тонн) можно изготовить из 400 м3 древесины, если содержание целлюлозы в них составляет 52%, а для производства 1 кг печатной бумаги требуется 1,5 кг целлюлозы? Плотность древесины составляет 500 кг/м3. Ответ запишите в виде десятичной дроби с точностью до десятых.
Шаг первый: вычислить массу данного в условии объёма древесины:
400·500 = 200000 кг.
Шаг второй: вычислить массу целлюлозы, содержащуюся в 200000 кг древесины:
200000·0,52 = 104000 кг.
Шаг третий: из пропорции найти массу бумаги, которую можно получить из 104000 кг древесины.
; кг = 69,3 т.
Ответ 69,3.
2. Решение задач на нахождение выхода продукта реакции.
Условие задачи: Вычислите выход глюкозы, если из хлопка массой 150 кг получили 110 кг этого моносахарида. Массовая доля целлюлозы в хлопке составляет 95%. Ответ выразите в процентах, запишите в виде целого числа.
Шаг первый: вычислить содержание целлюлозы в 150 кг хлопка.
150·0,95 = 142,5 кг.
Шаг второй: записать уравнение реакции гидролиза целлюлозы с образованием глюкозы:
(С6Н10О5)п + пН2О пС6Н12О6.
Шаг третий: вычислить молярные массы целлюлозы и глюкозы:
М((С6Н10О5)п) = п·(6·12 + 1·10 + 5·16) = 162·п г/моль;
М(С6Н12О6) = 6·12 + 1·12 + 6·16 = 180 г/моль.
Шаг четвёртый: с помощью пропорции найти теоретически возможное количество глюкозы, которое может быть получено по этой реакции:
; кг.
Шаг пятый: найти выход глюкозы как отношение практически полученного количества глюкозы к теоретически возможному, выраженное в процентах:
%.
Так как в ответе требуется записать целое число, то округляем до 70%.
Ответ: 70.
Физические и химические свойства крахмала, целлюлозы,гликогена. Химия подготовка к зно и дпа комплексное издание
Высокомолекулярные органические структуры, которые содержат большое количество остатков моносахаридов, называются полисахаридами.
Строение всех полисахаридов одинаково тем, что остатки моносахаридов соединяются полуацетатным гидроксилом данной молекулы и спиртовым гидроксилом иной молекулы. Остатки моносахаридов бывают идентичными либо различными. Самыми значимыми из полисахаридов считаются крахмал и целлюлоза. Молекулярная масса этих веществ достаточно большая. Они имеют строение из глюкозы, но ее молекулы соединены неодинаково. Обозначают эти два полисахарида одинаковой химической формулой (С6Н10О5)n.
Крахмал
Крахмал — это сложный углевод, представляющий собой зернистый хрустящий порошок белого цвета, не имеющий вкуса. Он не растворяется в холодной воде, а в воде с высокой температурой разбухает, образуется клейстер.
Данный полисахарид очень распространен в природной среде. Для растения стал запасным материалом и материалом для питания. Находится в них как крахмальное зерно. Наибольшее количество крахмала содержат зерна злаковых культур: в рисе его восемьдесят шесть процентов, в пшенице — семьдесят пять процентов, в кукурузных зернышках — семьдесят два процента. Больше всего крахмала в картошке. Здесь крахмальные зерна находятся в соке клеток, а в зернышках злаков они склеены растительным белком (клейковиной). Данный полимер — это результат процесса фотосинтеза.
Крахмал получают из разрушенных растительных клеток, вымывая его жидкостью. В промышленности его извлекают главным образом из картошки (картофельная мука) и кукурузных початков.
Крахмал добывают из овощей следующим способом:
- Подготовкам растительного сырья (мойка и чистка).
- Измельчение овощей, получение крахмальной жидкости, промывка.
- Отстаивание получившейся массы и ее повторная промывка (очистка от примесей).
- Получившийся серый порошок просушивают, охлаждают и просеивают.
Под влиянием ферментов либо в процессе нагревания совместно с кислотами (катализатор при этом — ионы водорода) крахмал гидролизируется. В процессе этой химической реакции сперва появляется крахмал, который является растворимым, а потом образуются декстрины (простые вещества). В конечном итоге образуется глюкоза.
Крахмал не выдает реакцию «серебряное зеркало» (в ее итоге появляется серебро, оседающее на поверхности), но продукты, которые образовались в результате его гидролизации, выдают эту реакцию.
Крахмал взаимодействует с раствором йода. Когда к холодному клейстеру, который получился завариванием крахмала горячей водой, добавляют раствор йода, то клейстер окрашивается в синий цвет. Когда такой клейстер нагревают, то этот цвет теряется, а когда клейстер снова становится холодным, то цвет возвращается. Такую особенность крахмала используют, когда необходимо определить наличие крахмала в продуктах для еды. К примеру, маленькая капелька йода, нанесенная на кусочек картофельного клубня либо на кусочек пшеничного хлеба, окрашивает продукт в синий цвет.
В человеческой пище крахмал стал главным углеводом, он выступает как энергетический источник. Недостаточное количество крахмала в организме человека ведет к слабости; быстрому утомлению; к снижению сопротивляемости инфекциям; к ломкости ногтевых пластин; а еще к тому, что волосы секутся. Пищевыми продуктам с большим содержанием данного вещества можно пополнить его количество в человеческом организме. Крахмала много в пшеничном хлебушке, различных крупах, картошке, овощных культурах. Его перерабатывают в глюкозу, декстрины, патоку и используют при изготовлении кондитерских изделий. Причем различные виды крахмала обеспечивают различную плотность в одном и том же водном объеме. Наибольшая плотность получается при применении рисового крахмала, несколько более жидкая субстанция образуется из картофельного крахмала, а нежнейшая консистенция у крахмала из кукурузы.
В пищевых изделиях крахмал снижает вкус продукта, чувствуется пресный, сырой, неинтересный привкус, поэтому добавление крахмала приводит к увеличению количества других ингридиентов, чтобы вкус еды был нормальным. Например, в густой кисель нужно положить больше сахара и лимонки.
Применяют крахмал и в качестве клея. В отделке текстильного полотна и при накрахмаливании одежды он тоже необходим. Его используют для изготовления мазей и присыпок в медицинской промышленности.
Целлюлоза
Целлюлоза также является углеводом. Она имеет большее распространение, чем сам крахмал, является составной частью оболочки клеток растений. Целлюлозу по-другому называют клетчаткой. В деревянном сырье находится шестьдесят процентов целлюлозы, а в бумаге, которую отфильтровали, содержится примерно девяносто процентов целлюлозы.
Целлюлоза представляет собой твердое вещество, не имеющее запаха, белого цвета, которое не растворяется в водном растворе и других растворителях, относящихся к органике. Она хорошо растворяется в концентрированном растворе аммиака с гидроксидом меди (называется реактивом Швейцера). Из такого кислотного раствора получают целлюлозные волокна, называемые гидратцеллюлозой. Вещество клетчатка (целлюлоза) отличается значительной механической прочностью и эластичностью.
Молекулы целлюлозы строятся неразветвленно (нелинейно), поэтому образуются именно волокна этого вещества. А молекулы крахмала строятся и разветвлено, и линейно. Этим и отличаются крахмал и целлюлоза.
Различны эти вещества и по своему строению, а именно: крахмальные молекулы состоят из остатков альфа-глюкозы, а молекулы клетчатки состоят из остатков бета-глюкозы.
Эти незначительные отличия строения данных веществ приводят к большим отличиям в их свойствах. Крахмал является пищевым продуктом, а целлюлозу в пищу не используют.
При взаимодействии с йодом и серной кислотой, целлюлоза окрашивается в синий цвет. А при взаимодействии только лишь с йодом — окрашивается в коричневый оттенок.
Целлюлоза не выдает реакцию «серебряного зеркала». Каждый глюкозный остаток в ней содержит три группы гидроксилов, из-за которых могут образоваться эфиры. При стандартной температуре целлюлоза вступает в реакцию только с концентратами кислот. Как и крахмал, она подвержена гидролизации с появлением глюкозы, когда происходит ее нагрев с не концентрированными кислотами.
Гидролизация целлюлозы по-другому называется осахариванием. Это важное свойство, которое помогает получать из деревянных опилок и деревянной стружки целлюлозу. Когда ее сбраживают, то получается этил, он носит название гидролизного спирта. На гидролизных предприятиях из одной тонны деревянного сырья выходит примерно двести литров этила, это дает возможность заменять полторы тонны картошки либо ноль целых семь десятых тонн зерновых культур.
Глюкоза в своем сыром состоянии, которую получали из древесного сырья, применяется как корм для домашнего скота. А хлопок, лен и пенька (это все тоже является целлюлозой) применяются для производства хлопковых и льняных тканей.
Много целлюлозы используется для изготовление бумажной продукции. Бумага является тонким слоем волокон целлюлозы, они спрессовываются и проклеиваются, чтобы не допустить растекания чернил и краски. Изначально бумагу делали из стеблей риса, хлопкового волокна и старых тканей. Затем этого сырья стало не хватать. Стали применять древесное сырье. В промышленности целлюлозу можно получать варкой древесной щепы. Много бумаги нужно для производства газет, но ее качество (белый цвет, прочность, износоустойчивость) не имеет значения. Дешевую бумагу делают из хвойного древесного сырья, а дорогую качественную бумагу изготавливают из хлопковой и льняной макулатуры. Из целлюлозы путем химической обработки производят искусственное тканевое волокно (вискозное, шелковое, шерстяное), пластмассу, лак, пленку для кинофильмов и фотографий, порох без дыма.
Таким образом, сравнительная характеристика крахмала и целлюлозы показала, что крахмал и целлюлоза являются похожими полимерными веществами (сложными углеводами). Оба эти полимера белого оттенка. Они не растворяются в воде. Строятся из глюкозных молекул. Обозначаются одной химической формулой, способны гидролизоваться и не выдают реакцию «серебряного зеркала». Отличаются они своей структурой (у целлюлозы она линейная, а у крахмала и линейная, и разветвленная). Строение их также различно, хотя глюкоза присутствует в их составе (крахмал строится из остатков альфа-глюкозы, а целлюлоза — из остатков бета-глюкозы). Различны они и областью использования (крахмал применяют в качестве пищевого продукта, а целлюлозу — нет; целлюлозу используют для производства бумажной и текстильной продукции, для изготовления разных предметов, а крахмал — нет). Глюкоза отличается от крахмала и своей прочностью, из нее можно делать волокно. Она и разлагается дольше крахмала.
Технология развития критического мышления через чтение и письмо позволяет развивать критическое мышление учащихся при организации их работы с различными источниками информации (специально написанные тексты, параграфы учебника, видеофильмы, лекции учителя). Мотивацию учащихся к изучению нового материала осуществляют, привлекая их к самостоятельному целеполаганию, рефлексии, а также организуя коллективную, парную и индивидуальную самостоятельную работу на уроке. Использование этой технологии дает возможность учесть индивидуальные особенности познавательных интересов учащихся, обучать каждого в зоне ближайшего развития*.
В соответствии с этой технологией процесс обучения состоит из трех стадий. Первая – стадия вызова ; она заключается в актуализации и обобщении имеющихся знаний по изучаемой теме, возбуждении интереса к ней, мотивации учащихся к активной учебной деятельности.
На второй стадии – стадии осмысления – задачи другие: получение новой информации, ее осмысление и соотнесение с собственными знаниями.
Заключительная стадия – стадия размышления и рефлексии , подразумевающая целостное осмысление, присвоение и обобщение полученной информации, выработку собственного отношения к изучаемому материалу, выявление еще не познанного – вопросов и проблем для дальнейшей работы («новый вызов»), анализ всего процесса изучения материала.
Что дает учащимся эта технология? Во-первых, повышается ответственность за качество собственного образования. Во-вторых, развиваются навыки работы с текстами любого типа и с большими объемами информации. В-третьих, формируются творческие и аналитические способности, умение эффективно работать совместно с другими людьми.
Технология развития критического мышления наиболее эффективна при изучении материала, по которому может быть составлен интересный, познавательный текст. Возможны несколько форм (стратегий) применения этой технологии: «Чтение текста с пометками», «Заполнение таблицы ЗХУ (знаю, хочу узнать, узнал)», «Зигзаг», «Продвинутая лекция».
Положительные стороны предлагаемой технологии: самостоятельное добывание знаний, осмысление собственной деятельности в учебном процессе, повышение ответственности обучающихся. Полноценное занятие получается при сдвоенном уроке. Возможна организация практического занятия и изучение нового материала. Сложность заключается в неодинаковом темпе чтения и оформления письменной работы учащимися.
Цели урока. Обобщить знания учащихся о классификации углеводов и отличиях полисахаридов от моносахаридов; изучить особенности строения, нахождение в природе, физические и химические свойства крахмала и целлюлозы в сравнении; рассмотреть биологическую роль полисахаридов.
ХОД УРОКА
Стадия вызова
Учитель. На предыдущих уроках вы изучили классификацию углеводов и подробно рассмотрели особенности моносахаридов. Сегодня вам предстоит изучить строение, нахождение в природе, физические и химические свойства полисахаридов. Но сначала вспомним основные отличия полисахаридов от моносахаридов. С этой целью вам предлагается выполнить тест. (Листы с тестом заранее разложены на столах у учащихся.)
Тест
Выберите из предложенных утверждений только те, которые справедливы:
I в а р и а н т – для моносахаридов;
II в а р и а н т – для полисахаридов.
1. Их представителями являются глюкоза, фруктоза, галактоза, рибоза, дезоксирибоза.
2. Их представителями являются крахмал, гликоген, декстрины, целлюлоза, хитин.
3. Молекулы состоят из множества одинаковых повторяющихся групп атомов.
4. Подразделяются на триозы, тетрозы, пентозы, гексозы.
5. Имеют общую формулу (С 6 Н 10 О 5) n .
6. Молярная масса невелика и обычно не превышает нескольких сотен г/моль.
7. Молярная масса велика и может достигать нескольких миллионов г/моль.
8. Не вступают в реакцию гидролиза.
9. Способны подвергаться гидролизу.
10. Остатки молекул некоторых из них входят в состав нуклеотидов ДНК и РНК.
Ответы. I вариант: 1, 4, 6, 8, 10; II вариант: 2, 3, 5, 7, 9. |
Учащиеся выполняют тест, после чего осуществляют взаимную проверку в парах.
Стадия осмысления
Учитель предлагает учащимся в течение 20 мин. по учебнику О.С.Габриеляна «Химия. 10 класс» (М.: Дрофа, 2004) проработать текст – § 24, с. 206–210, используя специальные пометки карандашом:
«V» – это я знаю;
«+» – новая информация;
«–» – информация, противоречащая моим знаниям;
«?» – информация, требующая пояснения;
«!» – это интересно.
Учащиеся работают в группах по 3–4 человека, обмениваются мнениями по изучаемому вопросу, помогают друг другу преодолеть возникающие затруднения, делая необходимые пояснения.
Стадия размышления и рефлексии
Учащиеся возвращаются в па»ры и составляют таблицу по характеристике крахмала и целлюлозы (таблица). При этом в каждой паре один учащийся заполняет столбец о крахмале, а второй – о целлюлозе, после чего обмениваются результатами.
Таблица
Характеристика крахмала и целлюлозы
Характеристика | Полисахарид | |
Целлюлоза | ||
Молекулярная формула | (С 6 Н 10 O 5) n | (С 6 Н 10 O 5) n |
Особенности строения | Структурное звено – остаток циклической молекулы -глюкозы. Степень полимеризации от нескольких сотен до нескольких тысяч. Молярная масса достигает нескольких сотен тысяч г/моль. Структура макромолекул: линейная (амилоза) и разветвленная (амилопектин). В крахмале на долю амилозы приходится 10–20 %, а на долю амилопектина – 80–90 % | Структурное звено – остаток циклической молекулы -глюкозы. Степень полимеризации от нескольких тысяч до нескольких десятков тысяч. Молярная масса достигает нескольких миллионов г/моль. Структура макромолекул: линейная |
Нахождение в природе и биологические функции | В цитоплазме растительных клеток в виде зерен запасного питательного вещества. Содержание (по массе): в рисе – до 80 %, в пшенице и кукурузе – до 70 %, в картофеле – до 20 % | Обязательный элемент клеточной оболочки растений, выполняющий строительную, конструкционную функцию. Содержание (по массе): в волокнах хлопка – до 95 %, в волокнах льна и конопли – до 80 %, в древесине – до 50 % |
Физические свойства | Белый аморфный порошок, не растворяется в холодной воде, в горячей воде разбухает и образует коллоидный раствор – крахмальный клейстер (при этом амилоза, как составная часть крахмала, растворяется в горячей воде, а амилопектин только набухает) | Твердое волокнистое вещество, нерастворимое в воде |
Химические свойства | (С 6 Н 10 O 5) n + n Н 2 О -> n С 6 Н 12 O 6 . 2) Образование сложных эфиров за счет гидроксигрупп (практического значения не имеет). 3) Качественная реакция с йодом – синее окрашивание | 1) Образование глюкозы в
результате полного гидролиза: (С 6 Н 10 O 5) n + n Н 2 О -> n С 6 Н 12 O 6 . 2) Образование сложных эфиров за счет гидроксигрупп: при взаимодействии с азотной кислотой (в присутствии серной кислоты) – мононитратов, динитратов и тринитратов; при взаимодействии с уксусной кислотой (или уксусным ангидридом) – диацетатов и триацетатов. Все сложные эфиры получили широкое применение. 3) Реакции с йодом не дает |
Домашнее задание. Дополнить таблицу строками «Получение» и «Применение», используя § 24 учебника и справочную литературу; решить задачу № 1, стр. 210.
Л и т е р а т у р а
Габриелян О.С., Маскаев Ф.Н., Пономарев С.Ю., Теренин В.И. Химия. 10 класс. Учебник для общеобразовательных учреждений. М.: Дрофа, 2004, с. 206–210; Бессуднова Н.В., Евдокимова Т.А., Клочкова В.А . Развитие критического мышления учащихся на уроках биологии. Биология в школе, 2008, № 3, с. 24–30.
А.С.ГОРДЕЕВ,
учитель химии и экологии
гимназии № 20
(г. Донской, Тульская обл.)
* Понятие, введенное Л.С.Выготским, обозначающее расхождение между существующим уровнем развития ребенка и потенциальным, которого он способен достигнуть под руководством педагога и в сотрудничестве со сверстниками.
«Применение крахмала и целлюлозы» Работу выполнила ученица гимназии №343 Иванова Мария
Полисахариды: крахмал, целлюлоза Полисахариды являются высокомолекулярными соединениями, содержащими сотни и тысячи остатков моносахаридов. Общим для строения полисахаридов является то, что остатки моносахаридов связываются за счет полуацетального гидроксила одной молекулы и спиртового гидроксила другой и т.д. Каждый остаток моносахарида связан с соседними остатками гликозидными связями. Остатки моносахаридов, входящие в состав молекулы, могут быть одинаковыми или разными. Наибольшее значение из высших полисахаридов имеют крахмал, гликоген (животный крахмал), клетчатка (или целлюлоза). Все эти три полисахарида состоят из молекул глюкозы, по-разному соединенных друг с другом. Состав всех трех соединений можно выразить общей формулой: (С6Н10О5) n
Крахмал.. Крахмал относится к полисахаридам. Молекулярная масса этого вещества точно не установлена, но известно, что очень велика (порядка 100000) и для разных образцов может быть различна. Поэтому формулу крахмала, как и других полисахаридов, изображают в виде (С6Н10О5) n . Для каждого полисахарида n имеет различные значения.
Физические свойства! Крахмал представляет собой безвкусный порошок, нерастворимый в холодной воде. В горячей воде набухает, образуя клейстер. Крахмал широко распространен в природе. Он является для различных растений запасным питательным материалом и содержится в них в виде крахмальных зерен. Наиболее богато крахмалом зерно злаков: риса (до 86%), пшеницы (до 75%), кукурузы (до 72%), а также клубни картофеля (до 24%). В клубнях картофеля крахмальные зерна плавают в клеточном соке, а в злаках они плотно склеены белковым веществом клейковиной. Крахмал является одним из продуктов фотосинтеза.
Получение Из растений извлекают крахмал, разрушая клетки и отмывая его водой. В промышленном масштабе его получают главным образом из клубней картофеля (в виде картофельной муки), а также из кукурузы.
Применение Крахмал является основным углеводом пищи человека, он в больших количествах содержится в хлебе, крупах, картофеле, овощах. В значительных количествах крахмал перерабатывается на декстрины, патоку, глюкозу, которые используются в кондитерской промышленности. Крахмал используется как клеящее средство, применяется для отделки тканей, накрахмаливания белья. В медицине на основе крахмала готовят мази, присыпки и т.д.
Целлюлоза Целлюлоза — еще более распространенный углевод, чем крахмал. Из него состоят в основном стенки растительных клеток. В древесине содержится до 60%, в вате и фильтровальной бумаге — до 90% целлюлозы.
Состав и строение Состав целлюлозы, так же как и крахмала, выражают формулой (С6Н10О5) n . Значение n в некоторых видах целлюлозы достигает 10-12 тыс., а молекулярная масса доходит до нескольких миллионов. Молекулы ее имеют линейное (неразветвленное) строение, вследствие чего целлюлоза легко образует волокна. Молекулы же крахмала имеют как линейную, так и разветвленную структуру. В этом основное отличие крахмала от целлюлозы.
Физические свойства Чистая целлюлоза- белое твердое вещество, нерастворимое в воде и в обычных органических растворителях, хорошо растворимо в концентрированном аммиачном растворе гидроксида меди (II) (реактив Швейцера). Из этого раствора кислоты осаждают целлюлозу в виде волокон (гидратцеллюлоза). Клетчатка обладает довольно большой механической прочностью.
Применение целлюлозы Целлюлоза в виде хлопка, льна или пеньки идет на изготовление тканей — хлопчатобумажных и льняных. Большие количества ее расходуются на производство бумаги. Дешевые сорта бумаги изготовляют из древесины хвойных пород, лучшие сорта — из льняной и хлопчатобумажной макулатуры. Подвергая целлюлозу химической переработке, получают несколько видов искусственного шелка, пластмассы, кинопленку, бездымный порох, лаки и многое другое.
Чтобы пользоваться предварительным просмотром презентаций создайте себе аккаунт (учетную запись) Google и войдите в него: https://accounts.google.com
Подписи к слайдам:
Полисахариды. Крахмал Целлюлоза
КТО ТАКИЕ УГЛЕВОДЫ Углеводы – полифункциональные соединения это органические вещества, молекулы которых состоят из атомов углерода, водорода и кислорода, причем водород и кислород находятся в них, как правило, в таком же соотношении, как и в молекуле воды (2:1). Общая формула углеводов С n (H 2 O) m
ФУНКЦИИ УГЛЕВОДОВ 1 .. Они поставляют энергию для биологических процессов. 2. Являются исходным материалом для синтеза в организме других промежуточных или конечных метаболитов. 3.На долю углеводов приходится около 80% сухого вещества растений и около 20% животных. 4.Пища человека состоит примерно на 70% из углеводов.
ИСТОРИЧЕСКАЯ СПРАВКА Углеводы используются с глубокой древности — самым первым углеводом (точнее смесью углеводов), с которой познакомился человек, был мёд. Родиной сахарного тростника является северо-западная Индия-Бенгалия. Европейцы познакомились с тростниковым сахаром благодаря походам Александра Македонского в 327 г. до н.э. Крахмал был известен ещё древним грекам.
1. Свекловичный сахар в чистом виде был открыт лишь в 1747 г. немецким химиком А. Маргграфом 2. В 1811 г. русский химик Кирхгоф впервые получил глюкозу гидролизом крахмала 3. Впервые правильную эмпирическую формулу глюкозы предложил шведский химик Я. Берцеллиус в 1837 г. С 6 Н 12 О 6 4. Синтез углеводов из формальдегида в присутствии Са(ОН) 2 был произведён А.М. Бутлеровым в 1861 г.
Углеводы Моносахариды Олигосахариды Полисахариды Глюкоза, фруктоза, рибоза Сахароза Крахмал, целлюлоза
Углеводы = сахариды Простые (СН 2 О) n , где n =3-9 моносахариды Сложные Дисахариды С 12 Н 22 О 11 Полисахариды С x (Н 2 О) y глюкоза фруктоза галактоза С 6 — гексозы рибоза дезоксирибоза С 5 — пентозы сахароза лактоза мальтоза 2 гексозы крахмал гликоген целлюлоза хитин полигексоза Чем больше молекулярная масса углеводов, тем менее растворимое вещество и не сладкое на вкус. Классификация углеводов
Моносахариды — пентозы рибоза дезоксирибоза
Глюкоза Фруктоза Галактоза Моносахариды — гексозы
1) спиртовое брожение С 6 Н 12 О 6 → 2СН 3 -СН 2 ОН + 2СО 2 Этиловый спирт 2) молочнокислое брожение С 6 Н 12 О 6 → 2СН 3 -СНОН –СООН Молочная кислота 3) маслянокислое брожение С 6 Н 12 О 6 → С 3 Н 7 СООН + 2Н 2 + 2СО 2 4) Полное окисление С 6 Н 12 О 6 +6О 2 → 6Н 2О + 6СО 2 Специфические свойства глюкозы
Сахароза- дисахарид, образованный глюкозой и фруктозой
Доказательство наличия в сахарозе гидроксильных групп
Обугливание сахарозы
Мальтоза Мальтоза (солодовый сахар) Мальтозу можно получить при гидролизе крахмала под действием ферментов, содержащихся в солоде.
ИТОГИ ПОВТОРЕНИЯ: В сбалансированном питании углеводы составляют 60% от суточного рациона Углеводы Недостаток углеводов в пище вреден и приводит к тому, что в организме начинается усиленное использование энергетических возможностей белков и жиров. В этом случае резко увеличивает количество продуктов их расщепления, вредных для человека. По составу их можно классифицировать на Сложные крахмал (С 6 Н 10 О 5) n простые глюкоза С 6 Н 12 О 6 Они содержат две функциональные группы: 1) гидроксогруппу, структурная формула которой -ОН 2) карбонильную, структурная формула которой -НС=О Избыток углеводов в пище вреден и приводит к ожирению. Обильное потребление сахара отрицательно сказывается на функции кишечной микрофлоры, приводит к нарушению обмена холестерина и повышению его уровня в сыворотке крови. Углеводы в организме человека могут запасаться! глюкоза С 6 H 1 2 O 6 окисление до углекислого газа СО 2 и воды Н 2 О с выделением энергии (1 г. углеводов – 4,1 ккал.)
Тема: «Полисахариды: крахмал и целлюлоза» Крахмал Целлюлоза Гликоген (С6Н10О5) n (гидролизуются на большое количество молекул моносахаридов)
Крахмал – резервный полисахарид многих растений. В промышленности его получают из картофеля. Это белый порошок. Полисахариды
Целлюлоза (к летчатка) – широко распространена в природе: из неё построены ткани растений. Вата, фильтровальная бумага – наиболее чистые формы целлюлозы (до 96%). Составная часть древесины – целлюлоза. Полисахариды
Гликоген – животный крахмал, который откладывается в печени и является резервным веществом в организме человека и животных. Полисахариды
Сравнение крахмала и целлюлозы Крахмал Целлюлоза Состав Строение Физические свойства Химические свойства Нахождение в природе Биологическая роль Применение
Структурная формула крахмала Остатки α — глюкозы
Строение крахмала.
Структурная формула целлюлозы Остатки β — глюкозы
Физические свойства белый аморфный порошок не растворяется в холодной воде в горячей воде разбухает не обладает сладким вкусом твердое волокнистое белое вещество не растворяется в воде не обладает сладким вкусом крахмала целлюлозы
Видеоопыт
Химические свойства крахмала Качественная реакция (С 6 Н 10 О 5) n + I 2 → синее окрашивание 2. Гидролиз (С 6 Н 10 О 5) n + (n -1) H 2 O → nC 6 H 12 O 6 Крахмал → декстрины → мальтоза → глюкоза
Гидролиз крахмала
Химические свойства целлюлозы 1. Гидролиз (С 6 Н 10 О 5) n + (n -1) H 2 O → nC 6 H 12 O 6
Химические свойства целлюлозы 2. Образование сложных эфиров
Получение и свойства тринитроцеллюлозы
Получение ацетатного волокна
Растворение целлюлозы
Крахмал в природе
Целлюлоза в природе
Применение крахмала и целлюлозы
Проверим себя 1. Макромолекула крахмала состоит из остатков молекул… α — глюкозы β — глюкозы фруктозы
Проверим себя 2. Качественная реакция на крахмал – взаимодействие с … гидроксидом меди (II) йодом аммиачным раствором оксида серебра
Проверим себя 3. При гидролизе целлюлозы образуется… крахмал глюкоза этанол
Проверим себя 4. Тринитрат целлюлозы используется как … лекарственное средство взрывчатое вещество средство для тушения пожара
Проверим себя 5. Для изготовления ацетатного волокна используются… соли целлюлозы оксиды целлюлозы сложные эфиры целлюлозы
Поздравляю! Вы успешно справились со всеми заданиями!
Домашнее задание Параграф 24. упражнения 3,5 после параграфа
Карта сайта
Страница не найдена. Возможно, карта сайта Вам поможет.
- Главная
-
Университет
- Об университете
- Структура
- Нормативные документы и процедуры
- Лечебная деятельность
- Международное сотрудничество
-
Пресс-центр
- Новости
- Анонсы
- События
- Объявления и поздравления
- Online конференции
-
Фотоальбом
- Церемония подписания договора о сотрудничестве вуза и Гродненской православной епархии
- Диалоговая площадка с председателем Гродненского облисполкома Владимиром Степановичем Караником
- Выставка-презентация учреждений высшего образования «Образование будущего»
- Товарищеский турнир по мини-футболу
- Конференция «Современные проблемы радиационной и экологической медицины, лучевой диагностики и терапии»
- Посвящение в первокурсники-2021
- Встреча заместителя министра здравоохранения Д.В. Чередниченко со студентами
- Открытый диалог, приуроченный к 19-летию БРСМ
- Группа переподготовки по специальности «Организация здравоохранения»
- Собрания факультетов для первокурсников-2021
- День знаний — 2021
- Совет университета
- Студенты военной кафедры ГрГМУ приняли присягу
- День освобождения Гродно-2021
- Ремонтные и отделочные работы
- Итоговая практика по военной подготовке
- День Независимости-2021
- Студенты военной кафедры ГрГМУ: итоговая практика-2021
- Выпускной лечебного факультета-2021
- Выпускной медико-психологического и медико-диагностического факультетов-2021
- Выпускной педиатрического факультета-2021
- Выпускной факультета иностранных учащихся-2021
- Вручение дипломов выпускникам-2021
- Митинг-реквием, посвященный 80-й годовщине начала Великой Отечественной войны
- Акция «Память», приуроченная к 80-летию начала Великой Отечественной войны
- Республиканский легкоатлетический студенческий забег «На старт, молодежь!»
- Актуальные вопросы гигиены питания
- Торжественное мероприятие к Дню медицинских работников-2021
- Совет университета
- Выездное заседание Республиканского совета ректоров
- Церемония вручения медалей и аттестатов особого образца выпускникам 2021 года
- Предупреждение деструктивных проявлений в студенческой среде и влияния агрессивного информационного контента сети интернет
- Онлайн-выставка «Помнить, чтобы не повторить»
- Областная межвузовская конференция «Подвиг народа бессмертен»
- Финал первого Республиканского интеллектуального турнира ScienceQuiz
- Конференция «Актуальные вопросы коморбидности заболеваний в амбулаторной практике: от профилактики до лечения»
- День семьи-2021
- Диалоговая площадка с председателем Гродненского областного Совета депутатов
- Праздничные городские мероприятия к Дню Победы
- Областной этап конкурса «Королева студенчества-2021″
- Праздничный концерт к 9 мая 2021
- IV Республиканский гражданско-патриотический марафон «Вместе – за сильную и процветающую Беларусь!»
- Университетский кубок КВН-2021
- Музыкальная планета студенчества (завершение Дней ФИУ-2021)
- Молодёжный круглый стол «Мы разные, но мы вместе»
- Дни ФИУ-2021. Интеллектуальная игра «Что?Где?Когда?»
- Неделя донорства в ГрГМУ
- Творческая гостиная. Дни ФИУ-2021
- Открытие XVIII студенческого фестиваля национальных культур
- Передвижная мультимедийная выставка «Партизаны Беларуси»
- Республиканский субботник-2021
- Семинар «Человек внутри себя»
- Международный конкурс «Здоровый образ жизни глазами разных поколений»
- Вручение нагрудного знака «Жена пограничника»
- Встреча с представителями медуниверситета г. Люблина
- Королева Студенчества ГрГМУ — 2021
- День открытых дверей-2021
- Управление личными финансами (встреча с представителями «БПС-Сбербанк»)
- Весенний «Мелотрек»
- Праздничный концерт к 8 Марта
- Диалоговая площадка с председателем Гродненского облисполкома
- Расширенное заседание совета университета
- Гродно — Молодежная столица Республики Беларусь-2021
- Торжественное собрание, приуроченное к Дню защитника Отечества
- Вручение свидетельства действительного члена Белорусской торгово-промышленной палаты
- Новогодний ScienceQuiz
- Финал IV Турнира трех вузов ScienseQuiz
- Областной этап конкурса «Студент года-2020″
- Семинар дистанционного обучения для сотрудников университетов из Беларуси «Обеспечение качества медицинского образования и образования в области общественного здоровья и здравоохранения»
- Студент года — 2020
- День Знаний — 2020
- Церемония награждения лауреатов Премии Правительства в области качества
- Военная присяга
- Выпускной лечебного факультета-2020
- Выпускной медико-психологического факультета-2020
- Выпускной педиатрического факультета-2020
- Выпускной факультета иностранных учащихся-2020
- Распределение — 2020
- Стоп коронавирус!
- Навстречу весне — 2020
- Профориентация — 18-я Международная специализированная выставка «Образование и карьера»
- Спартакиада среди сотрудников «Здоровье-2020″
- Конференция «Актуальные проблемы медицины»
- Открытие общежития №4
- Встреча Президента Беларуси со студентами и преподавателями медвузов
- Новогодний утренник в ГрГМУ
- XIX Республиканская студенческая конференция «Язык. Общество. Медицина»
- Alma mater – любовь с первого курса
- Актуальные вопросы коморбидности сердечно-сосудистых и костно-мышечных заболеваний в амбулаторной практике
- Областной этап «Студент года-2019″
- Финал Science Qiuz
- Конференция «Актуальные проблемы психологии личности и социального взаимодействия»
- Посвящение в студенты ФИУ
- День Матери
- День открытых дверей — 2019
- Визит в Азербайджанский медицинский университет
- Семинар-тренинг с международным участием «Современные аспекты сестринского образования»
- Осенний легкоатлетический кросс — 2019
- 40 лет педиатрическому факультету
- День Знаний — 2019
- Посвящение в первокурсники
- Акция к Всемирному дню предотвращения суицида
- Турслет-2019
- Договор о создании филиала кафедры общей хирургии на базе Брестской областной больницы
- День Независимости
- Конференция «Современные технологии диагностики, терапии и реабилитации в пульмонологии»
- Выпускной медико-диагностического, педиатрического факультетов и факультета иностранных учащихся — 2019
- Выпускной медико-психологического факультета — 2019
- Выпускной лечебного факультета — 2019
- В добрый путь, выпускники!
- Распределение по профилям субординатуры
- Государственные экзамены
- Интеллектуальная игра «Что? Где? Когда?»
- Мистер и Мисс факультета иностранных учащихся-2019
- День Победы
- IV Республиканская студенческая военно-научная конференция «Этих дней не смолкнет слава»
- Республиканский гражданско-патриотический марафон «Вместе — за сильную и процветающую Беларусь!»
- Литературно-художественный марафон «На хвалях спадчыны маёй»
- День открытых дверей-2019
- Их имена останутся в наших сердцах
- Областной этап конкурса «Королева Весна — 2019″
- Королева Весна ГрГМУ — 2019
- Профориентация «Абитуриент – 2019» (г. Барановичи)
- Мероприятие «Карьера начинается с образования!» (г. Лида)
- Итоговое распределение выпускников — 2019
- «Навстречу весне — 2019″
- Торжественная церемония, посвященная Дню защитника Отечества
- Торжественное собрание к Дню защитника Отечества — 2019
- Мистер ГрГМУ — 2019
- Предварительное распределение выпускников 2019 года
- Митинг-реквием у памятника воинам-интернационалистам
- Профориентация «Образование и карьера» (г.Минск)
- Итоговая коллегия главного управления здравоохранения Гродненского областного исполнительного комитета
- Спартакиада «Здоровье — 2019»
- Итоговая научно-практическая конференция «Актуальные проблемы медицины».
- Расширенное заседание Совета университета.
- Научно-практическая конференция «Симуляционные технологии обучения в подготовке медицинских работников: актуальность, проблемные вопросы внедрения и перспективы»
- Конкурс первокурсников «Аlma mater – любовь с первого курса»
- XVI съезд хирургов Республики Беларусь
- Итоговая практика
- Конкурс «Студент года-2018»
- Совет университета
- 1-й съезд Евразийской Аритмологической Ассоциации (14.09.2018 г.)
- 1-й съезд Евразийской Аритмологической Ассоциации (13.09.2018 г.)
- День знаний
- День независимости Республики Беларусь
- Церемония награждения победителей конкурса на соискание Премии СНГ
- День герба и флага Республики Беларусь
- «Стань донором – подари возможность жить»
- VIII Международный межвузовский фестиваль современного танца «Сделай шаг вперед»
- Конкурс грации и артистического мастерства «Королева Весна ГрГМУ – 2018»
- Окончательное распределение выпускников 2018 года
- Митинг-реквием, приуроченный к 75-летию хатынской трагедии
- Областное совещание «Итоги работы терапевтической и кардиологической служб Гродненской области за 2017 год и задачи на 2018 год»
- Конкурсное шоу-представление «Мистер ГрГМУ-2018»
- Предварительное распределение выпускников 2018 года
- Итоговая научно-практическая конференция «Актуальные проблемы медицины»
- II Съезд учёных Республики Беларусь
- Круглый стол факультета иностранных учащихся
- «Молодежь мира: самобытность, солидарность, сотрудничество»
- Заседание выездной сессии Гродненского областного Совета депутатов
- Областной этап республиканского конкурса «Студент года-2017»
- Встреча с председателем РОО «Белая Русь» Александром Михайловичем Радьковым
- Конференция «Актуальные вопросы инфекционной патологии», 27.10.2017
- XIX Всемирный фестиваль студентов и молодежи
- Республиканская научно-практическая конференция «II Гродненские аритмологические чтения»
- Областная научно-практическая конференция «V Гродненские гастроэнтерологические чтения»
- Праздник, посвящённый 889-летию города Гродно
- Круглый стол на тему «Место и роль РОО «Белая Русь» в политической системе Республики Беларусь» (22.09.2017)
- ГрГМУ и Университет медицины и фармации (г.Тыргу-Муреш, Румыния) подписали Соглашение о сотрудничестве
- 1 сентября — День знаний
- Итоговая практика на кафедре военной и экстремальной медицины
- Квалификационный экзамен у врачей-интернов
- Встреча с Комиссией по присуждению Премии Правительства Республики Беларусь
- Научно-практическая конференция «Амбулаторная терапия и хирургия заболеваний ЛОР-органов и сопряженной патологии других органов и систем»
- День государственного флага и герба
- 9 мая
- Республиканская научно-практическая конференция с международным участием «V белорусско-польская дерматологическая конференция: дерматология без границ»
- «Стань донором – подари возможность жить»
- «Круглый стол» Постоянной комиссии Совета Республики Беларусь Национального собрания Республики Беларусь по образованию, науке, культуре и социальному развитию
- Весенний кубок КВН «Юмор–это наука»
- Мисс ГрГМУ-2017
- Распределение 2017 года
- Общегородской профориентационный день для учащихся гимназий, лицеев и школ
- Праздничный концерт, посвященный Дню 8 марта
- Конкурсное шоу-представление «Мистер ГрГМУ–2017»
- «Масленица-2017»
- Торжественное собрание и паздничный концерт, посвященный Дню защитника Отечества
- Лекция профессора, д.м.н. О.О. Руммо
- Итоговая научно-практическая конференция «Актуальные проблемы медицины»
- Меморандум о сотрудничестве между областной организацией Белорусского общества Красного Креста и региональной организацией Красного Креста китайской провинции Хэнань
- Визит делегации МГЭУ им. А.Д. Сахарова БГУ в ГрГМУ
- «Студент года-2016»
- Визит Чрезвычайного и Полномочного Посла Королевства Швеция в Республике Беларусь господина Мартина Оберга в ГрГМУ
- Конкурс первокурсников «Аlma mater – любовь с первого курса»
- День матери в ГрГМУ
- Итоговая практика-2016
- День знаний
- Визит китайской делегации в ГрГМУ
- Визит иностранной делегации из Вроцлавского медицинского университета (Республика Польша)
- Торжественное мероприятие, посвященное профессиональному празднику – Дню медицинского работника
- Визит ректора ГрГМУ Виктора Александровича Снежицкого в Индию
- Республиканская университетская суббота-2016
- Республиканская акция «Беларусь против табака»
- Встреча с поэтессой Яниной Бокий
- 9 мая — День Победы
- Митинг, посвященный Дню Государственного герба и Государственного флага Республики Беларусь
- Областная межвузовская студенческая научно-практическая конференция «1941 год: трагедия, героизм, память»
- «Цветы Великой Победы»
- Концерт народного ансамбля польской песни и танца «Хабры»
- Суботнiк ў Мураванцы
- «Мисс ГрГМУ-2016»
- Визит академика РАМН, профессора Разумова Александра Николаевича в УО «ГрГМУ»
- Визит иностранной делегации из Медицинского совета Мальдивской Республики
- «Кубок ректора Гродненского государственного медицинского университета по дзюдо»
- «Кубок Дружбы-2016» по мини-футболу среди мужских и женских команд медицинских учреждений образования Республики Беларусь
- Распределение выпускников 2016 года
- Визит Министра обороны Республики Беларусь на военную кафедру ГрГМУ
- Визит Первого секретаря Посольства Израиля Анны Кейнан и директора Израильского культурного центра при Посольстве Израиля Рей Кейнан
- Визит иностранной делегации из провинции Ганьсу Китайской Народной Республики в ГрГМУ
- Состоялось открытие фотовыставки «По следам Библии»
- «Кубок декана» медико-диагностического факультета по скалолазанию
- Мистер ГрГМУ-2016
- Приём Первого секретаря Посольства Израиля Анны Кейнан в ГрГМУ
- Спартакиада «Здоровье» УО «ГрГМУ» среди сотрудников 2015-2016 учебного года
- Визит Посла Республики Индия в УО «ГрГМУ»
- Торжественное собрание и концерт, посвященный Дню защитника Отечества
- Митинг-реквием, посвященный Дню памяти воинов-интернационалистов
- Итоговое заседание коллегии главного управления идеологической работы, культуры и по делам молодежи Гродненского облисполкома
- Итоговая научно-практическая конференция Гродненского государственного медицинского университета
- Новогодний концерт
- Открытие профессорского консультативного центра
- Концерт-акция «Молодёжь против СПИДа»
- «Студент года-2015»
- Открытые лекции профессора, академика НАН Беларуси Островского Юрия Петровича
- «Аlma mater – любовь с первого курса»
- Открытая лекция Регионального директора ВОЗ госпожи Жужанны Якаб
- «Открытый Кубок по велоориентированию РЦФВиС»
- Совместное заседание Советов университетов г. Гродно
- Встреча с Министром здравоохранения Республики Беларусь В.И. Жарко
- День города
- Дебаты «Врач — выбор жизни»
- День города
- Праздничный концерт «Для вас, первокурсники!»
- Акция «Наш год – наш выбор»
- День знаний
- Открытое зачисление абитуриентов в УО «Гродненский государственный медицинский университет»
- Принятие военной присяги студентами ГрГМУ
- День Независимости Республики Беларусь
- Вручение дипломов выпускникам 2015 года
- Республиканская олимпиада студентов по педиатрии
- Открытие памятного знака в честь погибших защитников
- 9 мая
- «Вторая белорусско-польская дерматологическая конференция: дерматология без границ»
- Мистер университет
- Мисс универитет
- КВН
- Гродненский государственный медицинский университет
- Чествование наших ветеранов
- 1 Мая
- Cовместный субботник
- Наши издания
- Медицинский календарь
- Университет в СМИ
- Видео-презентации
- Общественные объединения
- Комиссия по противодействию коррупции
- Образовательная деятельность
- Абитуриентам
- Студентам
- Выпускникам
- Слайдер
- Последние обновления
- Баннеры
- Иностранному гражданину
- Научная деятельность
- Поиск
Формула крахмала в химии
Определение и формула крахмала
Химическая формула крахмала: (C6H10O5)n
Молярная масса: г/моль
Структурная формула крахмала
Крахмал содержит 10–20 % амилозы (внутренняя часть крахмального зерна) и 80–90% амилопектина (оболочка крахмального зерна). Оба полимера состоят из звеньев — глюкозы и имеют состав (C6H10O5)n.
Амилоза
Амилоза имеет неразветвленную структуру, обычно включающую 200–1000 звеньев (n = 200–1000). При образовании молекулы амилозы остатки глюкозы соединяются между собой аксиальными (14)-гликозидными связями:
Звенья -глюкозы закручивают макромолекулу амилозы в спираль, на каждый виток которой приходится 6 остатков глюкозы:
Такая структура вероятность возникновения межмолекулярных водородных связей, но увеличивает вероятность возникновения таких связей с молекулами воды. Поэтому амилоза способна растворяться в воде.
Амилопектин
Амилопектин имеет разветвленную структуру, n = 6000–40000. Полимерная цепь амилопектина также образуется за счет (14)-гликозидных связей. Разветвление цепи происходит путем образования -гликозидных связей и наблюдается через 20–25 остатков глюкозы.
Амилопектин не растворяется в воде, а только набухает с образованием коллоидного раствора. Гликоген (животный крахмал) построен подобно амилопектину, только его макромолекулы которого отличаются еще большей разветвлённостью.
При нормальных условиях крахмал – белый безвкусный порошок, в холодной воде не растворяется, в горячей – набухает с образованием коллоидного раствора (крахмального клейстера). При растирании издает характерный скрип.
Кислотный гидролиз крахмала проходит ступенчато. Сначала крахмал превращается в полимеры с меньшей степенью полимеризации – декстрины, потом в дисахарид (мальтозу), и в конечном итоге – в глюкозу:
Суммарная реакция:
Качественная реакция на крахмал – взаимодействие с раствором йода (I2), образуется комплексное соединение включения (клатрат) синего цвета. При нагревании раствора окраска исчезает.
Примеры решения задач
Идентификация | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Идентификатор YMDB | YMDB00881 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Название | Glycogen000
|