Строение мышц анатомия: Общая анатомия мышц, строение мышцы как органа. Развитие скелетных мышц, их классификация (по форме, строению, расположению и т.Д.). Анатомический и физиологический поперечник мышц.

Общая анатомия мышц, строение мышцы как органа. Развитие скелетных мышц, их классификация (по форме, строению, расположению и т.Д.). Анатомический и физиологический поперечник мышц.

3

0(II) Общая анатомия мышц

В теле и внутренних органах человека находятся скелетные мышцы из исчерченной мышечной ткани, гладкие – из неисчерченной мышечной ткани, сердечная – из мышечной ткани особенного строения и функции.

Скелетные мышцы связаны с костями и действуют вместе с ними и суставами в единой биомеханической системе рычагов, обеспечивая статику и динамику тела. Часть из них входит во внутренние органы: глаз, ухо, полость рта, глотку, пищевод, гортань, задний проход, влагалище, мочеиспускательный канал, обеспечивая движение, формируя стенку и сфинктеры органов.

Общая масса скелетной мускулатуры составляет у новорожденных – 20-22 %, взрослых – 40 %, стариков – 25-30 % от массы всего тел.

Гладкие мышцы располагаются в коже, сосудах, стенках полых внутренних органов, выделительных протоках желез. Сердечная мышца состоит из проводящих и сократительных мышечных клеток – кардиомиоцитов.

Мускул (мышца) – орган, построенный из мышечных волокон (клеток), каждое из них обладает соединительно-тканной оболочкой – эндомизием. В пучки мышечные волокна объединяет другая фиброзная оболочка – перимизий, а весь мускул заключается в общую фиброзную оболочку, образованную фасцией – эпимизий. Между пучками проходят сосуды и нервы, снабжающие мышечные волокна.

На макроуровне скелетная мышца имеет:

  • брюшко (вентер) – мясистая часть органа, занимающая его средину;

  • сухожилие (тендо), относящееся к дистальному концу, оно может быть в виде апоневроза, сухожильных перемычек, длинных пучков продольных фиброзных волокон;

  • головку, составляющую проксимальную часть;

  • сухожилие и головка крепятся на противоположных концах костей.

Сила мышцы на 1 см 2 ее поперечного сечения называется абсолютной и составляет от 50 до 100 Н, что зависит от длины мышечных волокон и площади поперечного сечения. Начало мышцы на кости находится ближе к срединной оси тела – это фиксированная точка (пунктум фиксум), конец мышцы лежит на кости дистальнее и, являясь местом прикрепления, называется подвижной точкой (пунктум мобиле). При сокращении мышцы точки сближаются, а при изменении положения тела могут меняться местами.

Мышцы развиваются из мезодермы. На туловище они возникают из первичной сегментированной мезодермы – сомитов: 3-5 затылочных, 8 шейных, 12 грудных, 5 поясничных, 5 крестцовых, 4-5 копчиковых.

Каждый сомит подразделяется на склеротом, дерматом и миотом – из него и развиваются мышцы туловища.

Сомиты появляются рано, когда длина зародыша составляет 10-15 мм.

Из дорсальных частей миотомов возникают глубокие, собственные (аутохтонные) мышцы спины, из вентральных – глубокие мышцы груди и живота. Они закладываются, развиваются и остаются в пределах туловища – поэтому называются аутохтонными (местными, туземными). Очень рано миотомы связываются с нервной системой и каждому мышечному сегменту соответствует нервный сегмент. Каждый нерв следует за развивающейся мышцей, врастает в нее и, пока она не дифференцировалась, подчиняет своему влиянию.

В процессе развития часть скелетных мышц перемещается с туловища и шеи на конечности – трункофугальные мышцы: трапециевидная, грудино-ключично-сосцевидная, ромбовидные, поднимающая лопатку и др.

Часть мышц, наоборот, направляется с конечностей на туловище – трункопетальные мышцы: широчайшая мышца спины, большая и малая грудные, большая поясничная.

Мышцы головы мимические и жевательные, над- и подъязычные мышцы шеи развиваются из несегментированной вентральной мезодермы, входящей в состав висцеральных (жаберных) дуг. Они называются висцеральными и, например, жевательные мышцы развиваются на основе первой висцеральной дуги, а мимические – второй. Однако мышцы глазного яблока и языка развиваются из затылочных миотомов сегментированной мезодермы. Глубокие передние и задние мышцы шеи также возникают из затылочных шейных миотомов, а поверхностная и средняя группа мышц в передней области шеи развиваются на основе несегментированной мезодермы висцеральных дуг.

Мышцы. Большая российская энциклопедия

Органы

Области знаний:
Анатомия и морфология
Другие наименования:
Мускулы

Мы́шцы (мускулы), органы тела животных и человека, обладающие способностью к сокращению; в состав мышц входят мышечная ткань, соединительная ткань, одевающая и связывающая друг с другом мышечные волокна и образующая оболочки мышц (фасции) и сухожилия (служат для прикрепления мышц к элементам скелета), а также нервы и кровеносные сосуды. В совокупности мышцы образуют мышечную систему. Мышцы обеспечивают различные формы подвижности внутри организма и движения организма во внешней среде.

Мышцы впервые формируются у кольчатых червей и состоят из гладкой мышечной ткани; у головоногих моллюсков и членистоногих образуется система поперечно-полосатых мышц. Гистологический образец гладкой мышечной ткани.У позвоночных животных и человека мышцы, образованные гладкой мышечной тканью, формируют мускулатуру стенок внутренних органов (пищеварительного тракта, кровеносных и лимфатических сосудов, дыхательных путей, выделительных протоков, мочевого пузыря и др.), поперечно-полосатые мышцы, состоящие из одноимённой мышечной ткани, – скелетную мускулатуру. В функциональном отношении гладкие мышцы характеризуются непроизвольным, относительно медленным сокращением, способностью длительное время находиться в состоянии сокращения; поперечно-полосатые мышцы, напротив, сокращаются быстрее, чем гладкие, под влиянием нервного импульса. Как правило, отдельно выделяют поперечно-полосатую мышцу сердца – миокард.

У позвоночных животных и человека различают мышцы висцеральной мускулатуры и мышцы соматической мускулатуры. Внутренние органы образованы при участии висцеральных мышц, развивающихся в онтогенезе из боковой пластинки мезодермы; они содержат и гладкую, и поперечно-полосатую (мышцы глотки и сердца) мышечную ткань; эти мышцы иннервируются двигательными волокнами спинномозговых нервов. Соматические (париетальные, скелетные) мышцы формируются из миотомов мезодермальных сомитов, состоят из поперечно-полосатой мышечной ткани, иннервируются спинномозговыми и черепно-мозговыми (глазодвигательным, блоковым, отводящим и подъязычным) нервами.

Гистологический образец поперечно-полосатой скелетной мышечной ткани.

Форма и размеры скелетных мышц весьма разнообразны. Различают длинные, короткие, широкие и круговые мышцы, а также веретеновидные, плоские, ремневидные (лентовидные). Наиболее утолщённую (мясистую) часть мышцы называют брюшком, конечные отделы – головкой (прикреплена к скелетному элементу коротким сухожилием или мускульными волокнами) и хвостом (прикреплён длинным сухожилием). Существуют мышцы с несколькими головками и брюшками, разделёнными сухожильными прослойками.

По внутреннему строению дифференцируют мышцы простые (с параллельными, относительно длинными мышечными волокнами, тянущимися вдоль оси мышцы) и перистые (с косо расположенными короткими волокнами, прикреплёнными к осевому сухожилию). Перистое строение мышцы позволяет размещаться в ней большему числу мышечных волокон (при равном объёме), что обеспечивает значительную силу сокращения при меньшей его длине (по сравнению с простыми мышцами). В составе такой мышцы разные пучки волокон, расположенные в различных направлениях, могут сокращаться сильнее или слабее, обусловливая разнообразие движений.

По числу вовлекаемых в движение суставов выделяют одно-, дву- и многосуставные мышцы (некоторые мышцы не связаны с суставами, например, подъязычные, мимические и др.). По характеру движения, вызываемого сокращением данной мышцы, различают мышцы –сгибатели, разгибатели, подниматели, опускатели, сжиматели, расширители, приводящие, отводящие, вращающие и др. Обычно движения в суставах осуществляются при участии целых мускульных комплексов, в которых разные мышцы взаимодействуют друг с другом. При этом мышцы, вызывающие при своём сокращении один и тот же тип движений в данном суставе (например, его сгибатели), именуются синергистами, а обусловливающие противоположные движения (например, сгибатели и разгибатели) – антагонистами. Тонкий контроль движений, их силы, скорости и плавности достигается одновременным сокращением с разной степенью интенсивности нескольких разных синергистов и антагонистов. Мышцы подвержены значительной изменчивости, проявлениями которой могут быть наличие или отсутствие отдельных мышц или их частей, вариации их числа, формы, размеров, способов прикрепления, топографических соотношений с соседними структурами или изменение функций (у ряда видов рыб, например, некоторые мышцы преобразовались в электрические органы).

Н. Н. Иорданский. Первая публикация: Большая российская энциклопедия, 2012.

Дата публикации:  28 ноября 2022 г. в 23:01 (GMT+3)

Анатомия, скелетные мышцы — StatPearls

Введение

Скелетно-мышечная система представляет собой одну из основных систем тканей/органов в организме. Тремя основными типами мышечной ткани являются группы скелетных, сердечных и гладких мышц.[1][2][3] Скелетные мышцы прикрепляются к костям сухожилиями, и вместе они производят все движения тела. Скелетные мышечные волокна пересекаются регулярным рисунком из тонких красных и белых линий, что придает мышце характерный исчерченный вид. Следовательно, они также известны как поперечно-полосатые мышцы.

Структура и функция

Скелетная мышца является одной из трех основных мышечных тканей в организме человека. Каждая скелетная мышца состоит из тысяч мышечных волокон, обернутых вместе оболочками из соединительной ткани. Отдельные пучки мышечных волокон в скелетной мышце известны как пучки. Самая наружная соединительнотканная оболочка, окружающая всю мышцу, известна как эпимизий. Соединительнотканная оболочка, покрывающая каждый пучок, известна как перимизий, а самая внутренняя оболочка, окружающая отдельное мышечное волокно, известна как эндомизий.] Каждое мышечное волокно состоит из ряда миофибрилл, содержащих несколько миофиламентов.

Когда все миофибриллы собираются вместе, они выстраиваются в уникальную полосатую структуру, образуя саркомеры, которые являются основной сократительной единицей скелетной мышцы. Двумя наиболее важными миофиламентами являются актиновые и миозиновые филаменты, расположенные по-разному, образуя различные полосы на скелетных мышцах. Стволовые клетки, которые дифференцируются в зрелые мышечные волокна, известны как сателлитные клетки, которые можно найти между базальной мембраной и сарколеммой (клеточная мембрана, окружающая клетку поперечно-полосатых мышечных волокон).[10] При стимуляции факторами роста они дифференцируются и размножаются, образуя новые клетки мышечных волокон.[11]

Основные функции скелетных мышц осуществляются за счет внутреннего процесса сопряжения возбуждения и сокращения. Поскольку мышца прикреплена к костным сухожилиям, сокращение мышцы приводит к движению этой кости, что позволяет выполнять определенные движения. Скелетная мышца также обеспечивает структурную поддержку и помогает поддерживать осанку тела. Скелетные мышцы также служат источником хранения аминокислот, которые различные органы тела могут использовать для синтеза специфических для органов белков. [12] Скелетные мышцы также играют центральную роль в поддержании термостаза и служат источником энергии во время голодания.[9]]

Эмбриология

Различные механизмы транскрипции и специфическая регуляторная активность генов контролируют дифференцировку мышечных волокон.[13] Во время эмбриогенеза парааксиальная мезодерма подвергается ступенчатой ​​дифференцировке с образованием мышечной ткани. Парааксиальная мезодерма по обе стороны от нервной трубки начинает дифференцироваться и подвергается сегментации с образованием сомитов. Сомиты стимулируются миогенными регулирующими факторами, чтобы дифференцироваться в дермомиотом и склеротом. Эти регуляторные факторы включают белки Wnt, Shh и BMP4. Нервная трубка и поверхностная эктодерма являются первичными источниками белков Wnt, белки Shh (Sonic hedgehog) являются источником хорды, а пластинка латеральной мезодермы продуцирует белок BMP4. Латеральная часть дермомиотома претерпевает переход от эпителия к мезенхиме, поскольку он продолжает мигрировать на вентральную сторону, образуя уникальный миотом ниже дерматома.

Затем миотом дифференцируется, образуя скелетные мышцы тела, после стимуляции сигнальной молекулой Sonic Hedgehog (Shh) из хорды, что приводит к экспрессии Myf5 и последующей дифференцировке.[15] Дорсомедиальная часть миотома дифференцируется в эпаксиальный миотом, дающий начало мышцам спины. Вентролатеральный аспект дифференцируется в гипаксиальный миотом , который дает начало мышцам стенки тела.

Несколько сигнальных молекул, таких как Wnt и BMP, и некоторые транскрипционные факторы, такие как гомеобокс sine oculis, ответственны за эту дифференциацию. Развитие скелетных мышц конечностей и туловища зависит от экспрессии MyoD и Myf5 и их влияния на различные миобласты.[16] Эти эмбриональные миобласты подвергаются дальнейшей дифференциации с образованием первичных мышечных волокон и, в конечном итоге, вторичных миофибрилл путем объединения миобластов у плода. После рождения клетки-сателлиты действуют как стволовые клетки и отвечают за дальнейший рост и развитие скелетных мышц.

Кровоснабжение и лимфатическая система

Первичная артерия, снабжающая кровью конкретную скелетную мышцу, обычно проходит параллельно продольной оси мышечного волокна.[17] Первичная артерия отдает притоки, известные как питающие артерии, которые проходят перпендикулярно первичной артерии и направляются к внешней соединительнотканной оболочке мышечного волокна, называемой перимизием.[18] Питающая артерия разветвляется на первичные артериолы, которые после еще двух порядков ветвления дают начало поперечным артериолам, которые, в свою очередь, дают терминальные артериолы.[19]] Терминальные артериолы являются конечными сосудистыми ветвями, и они перфузируют капилляры, которые присутствуют в эндомизии, и проходят параллельно продольной оси мышечного волокна. Терминальная артериола вместе с капиллярами, которые она питает, известна как микрососудистая единица. Это наименьшая единица скелетной мышцы, в которой можно регулировать кровоток.

Лимфатические капилляры берут начало в скелетных мышцах в микроваскулярной единице внутри эндомизия рядом с основным капиллярным руслом и дренируют тканевую жидкость. Эти капилляры сливаются, образуя лимфатические сосуды по мере дренирования тканевой жидкости. Эти лимфатические сосуды проходят через перимизий и соединяются с более крупными лимфатическими сосудами. В отличие от кровеносных сосудов, стенки лимфатических сосудов внутри мышц не обладают сократительной способностью из-за отсутствия гладких мышц (в стенке), поэтому они зависят от движения мышц и пульсации артериол для оттока лимфы.

Нервы

Нейронная иннервация скелетных мышц обычно включает чувствительные нервные волокна, двигательные нервные волокна и нервно-мышечное соединение. Нервные волокна состоят из миелиновых и немиелинизированных нервных волокон. Тела клеток нейронов дают начало большим аксонам, которые обычно неразветвлены и направляются к целевым мышцам для иннервации. Рядом с мышцей-мишенью аксоны делятся на несколько меньших ветвей, иннервирующих несколько мышечных волокон. Окончание двигательного нерва имеет обильные митохондрии, эндоплазматический ретикулум и многочисленные связанные с мембраной синаптические пузырьки, содержащие нейротрансмиттер-ацетилхолин. [20] Как только потенциал действия достигает нервно-мышечного соединения, происходит ряд процессов, кульминацией которых является слияние мембраны синаптических пузырьков с пресинаптической мембраной и последующее высвобождение нейротрансмиттера в синаптическую щель.[21][22]

Постсинаптическая мембрана мышечных волокон имеет массивную концентрацию рецепторов нейротрансмиттеров (АХР). Эти рецепторы представляют собой трансмембранные лиганд-управляемые ионные каналы.[23] Как только нейротрансмиттер активирует эти ионные каналы, происходит быстрая деполяризация моторной концевой пластинки, которая инициирует потенциал действия в мышечном волокне, что приводит к сокращению мышц.[21]

Мышцы

Каждая мышца состоит из нескольких тканей, включая кровеносные сосуды, лимфатические сосуды, сократительные мышечные волокна и оболочки из соединительной ткани. Наружная оболочка соединительной ткани, покрывающая каждую мышцу, называется эпимизием. Каждая мышца состоит из групп мышечных волокон, называемых пучками, окруженных слоем соединительной ткани, называемым перимизием. Несколько единиц отдельных мышечных волокон внутри каждого пучка окружены эндомизием, соединительнотканной оболочкой. Двумя наиболее важными миофиламентами, составляющими сократительные элементы мышечного волокна, являются актин и миозин. Они отчетливо расположены в виде полосатого рисунка, образуя темную полосу A, светлую полосу I и основную единицу сокращения, также называемую саркомером.

Саркомер состоит из центральной М-линии, к которой с обеих сторон прикреплены толстые миофиламенты миозина. Это формирует темную полосу А. Саркомер граничит с Z-линией, которая служит местом происхождения тонких миофиламентов актина, которые выступают друг к другу, поскольку они частично перекрывают миозиновые филаменты. [9] Регуляторные белки, а именно тропонин C, I, T , и тропомиозин играют ключевую роль в механизме скольжения миофиламентов, приводящем к сокращению. Титин и небулин — другие основные белки, влияющие на механические свойства мышц.[24] Существует уникальная система Т-трубочек для проведения потенциала действия нейронов внутрь мышечной клетки через инвагинации сарколеммы для улучшения координации и равномерного мышечного сокращения. [25]

Клиническое значение

Скелетные мышцы позволяют человеку двигаться и выполнять повседневные действия. Они играют важную роль в дыхательной механике и помогают поддерживать осанку и равновесие. Они также защищают жизненно важные органы в организме.

Различные заболевания возникают в результате нарушения функции скелетных мышц. К таким заболеваниям относятся миопатия, паралич, миастения, недержание мочи и/или кишечника, атаксия, слабость, тремор и другие. Заболевания нервов могут вызывать невропатию и вызывать нарушения функциональности скелетных мышц. Кроме того, разрывы скелетных мышц/сухожилий могут возникать остро у спортсменов высокого уровня или участников любительских видов спорта и приводить к значительной инвалидности у всех пациентов, независимо от статуса активности.[26]

Мышечные спазмы

Мышечные судороги приводят к непрерывным, непроизвольным, болезненным и локальным сокращениям всей группы мышц, отдельных мышц или отдельных мышечных волокон. [3] Как правило, судороги могут длиться от минут до нескольких секунд по идиопатическим или известным причинам у здоровых субъектов или при наличии заболеваний. При пальпации мышечной области судороги выявляется узел.

Мышечные судороги, связанные с физической нагрузкой, являются наиболее частым состоянием, требующим медицинского/терапевтического вмешательства во время занятий спортом.[27] Конкретная этиология недостаточно изучена, и возможные причины зависят от физиологической или патологической ситуации, в которой появляются судороги. Важно отметить, что болезненное сокращение, ограниченное определенной областью, не означает, что причина возникновения судорог обязательно локальна.

В определенных клинических сценариях основная этиология может быть связана с постоянными спастическими мышечными сокращениями, которые могут существенно повлиять на функцию человека. Типичный пример этого состояния проявляется в грудино-ключично-сосцевидной мышце. Клинически это распознается при врожденной кривошеи или спастической кривошеи.

[28]

Другие соответствующие состояния в этой области включают, но не ограничиваются следующим:0005

  • Синдром грушевидной мышцы [6] [29]

  • Синдром грудной апертуры (гипертрофия / спастичность лестничных мышц) [5]

  • Паралич/компрессионная невропатия

    На противоположном конце спектра существуют различные мышечные параличи, вторичные по отношению к долгосрочным нижестоящим последствиям различных нервных заболеваний и невропатий, потенциально приводящих к вялым состояниям (которые могут быть постоянными или временными). Эти синдромы и состояния включают, но не ограничиваются следующим:

    • Паралич Белла[30]

    • Синдром канала Гийона[31][32]

    • Синдром AIN или синдром PIN [33][34]

    • 9 9 Средний нерв в запястном туннеле) [35] [36]

    • Supraspinatus и/или Atrophy Infraspinatus [37]

    • Клампке Палич [38]

    Обзор.

    9008
  • 99999999999444494499444999449

    49949949999499499499499499

    49499

    9499994999999949994999

    494949999999999499999999994999999999.
  • . вопросы по этой теме.

  • Прокомментируйте эту статью.

  • Рисунок

    Скелетные мышцы, сарколемма, миофибриллы, двигательный нейрон, кровеносный капилляр, эндомизий, мышечное волокно (клетка), пучок, перимизий, кровеносные сосуды, эпимизий, сухожилие, глубокая фасция. Иллюстрация Эммы Грегори. Кости и скелетные мышцы: ключевые игроки в механотрансдукции и потенциальные механизмы перекрытия. Кость. 2015 ноябрь;80:24-36. [Бесплатная статья PMC: PMC4600534] [PubMed: 26453495]

    2.

    Wilke J, Engeroff T, Nürnberger F, Vogt L, Banzer W. Анатомическое исследование морфологической непрерывности между подвздошно-большеберцовым трактом и длинной малоберцовой фасцией. Сур Радиол Анат. 2016 Апрель; 38 (3): 349-52. [PubMed: 26522465]

    3.

    Бордони Б. , Сугумар К., Варакалло М. StatPearls [Интернет]. Издательство StatPearls; Остров сокровищ (Флорида): 4 сентября 2022 г. Мышечные спазмы. [PubMed: 29763070]

    4.

    Бордони Б., Варакалло М. StatPearls [Интернет]. Издательство StatPearls; Остров сокровищ (Флорида): 18 июля 2022 г. Анатомия, сухожилия. [В паблике: 30020609]

    5.

    Бордони Б., Варакалло М. StatPearls [Интернет]. Издательство StatPearls; Остров сокровищ (Флорида): 16 апреля 2022 г. Анатомия, голова и шея, лестничная мышца. [PubMed: 30085600]

    6.

    Чанг А., Ли Н., Варакалло М. StatPearls [Интернет]. Издательство StatPearls; Остров сокровищ (Флорида): 4 сентября 2022 г. Инъекция грушевидной формы. [PubMed: 28846327]

    7.

    Борн М., Талкад А., Варакалло М. StatPearls [Интернет]. Издательство StatPearls; Остров сокровищ (Флорида): 8 августа 2022 г. Анатомия, костный таз и нижняя конечность, фасция стопы. [В паблике: 30252299]

    8.

    Бордони Б., Махабади Н., Варакалло М. StatPearls [Интернет]. Издательство StatPearls; Остров сокровищ (Флорида): 18 июля 2022 г. Анатомия, фасция. [PubMed: 29630284]

    9.

    Frontera WR, Ochala J. Скелетные мышцы: краткий обзор структуры и функции. Кальциф ткани Int. 2015 март; 96(3):183-95. [PubMed: 25294644]

    10.

    Хикида Р.С. Возрастные изменения сателлитных клеток и их функции. Curr Старение Sci. 2011 Декабрь;4(3):279-97. [PubMed: 21529324]

    11.

    Stone WL, Leavitt L, Varacallo M. StatPearls [Интернет]. Издательство StatPearls; Остров сокровищ (Флорида): 8 мая 2022 г. Физиология, фактор роста. [PubMed: 28723053]

    12.

    Вулф Р.Р. Недооцененная роль мышц в здоровье и болезни. Am J Clin Nutr. 2006 г., сен; 84 (3): 475-82. [PubMed: 16960159]

    13.

    Букингем М., Ригби П.В. Сети регуляции генов и механизмы транскрипции, контролирующие миогенез. Ячейка Дев. 2014 10 февраля; 28 (3): 225-38. [В паблике: 24525185]

    14.

    Эрнандес-Эрнандес Х.М., Гарсия-Гонсалес Э.Г., Брун К.Е., Рудницкий М.А. Миогенные регуляторные факторы, детерминанты развития мышц, идентичности клеток и регенерации. Semin Cell Dev Biol. 2017 дек;72:10-18. [Бесплатная статья PMC: PMC5723221] [PubMed: 29127045]

    15.

    Борицкий А.Г., Бранк Б., Таджбахш С., Букингем М., Чан С., Эмерсон С.П. Sonic hedgehog контролирует определение эпаксиальных мышц посредством активации Myf5. Разработка. 1999 сентября; 126 (18): 4053-63. [PubMed: 10457014]

    16.

    Каблар Б., Крастел К., Ин С., Асакура А., Тапскотт С.Дж., Рудницки М.А. MyoD и Myf-5 по-разному регулируют развитие скелетных мышц конечностей и туловища. Разработка. 1997 декабрь; 124 (23): 4729-38. [PubMed: 9428409]

    17.

    Bagher P, Segal SS. Регуляция кровотока в микроциркуляторном русле: роль проводимой вазодилатации. Acta Physiol (Oxf). 2011 июль; 202(3):271-84. [Бесплатная статья PMC: PMC3115483] [PubMed: 21199397]

    18.

    Сегал СС. Интеграция контроля кровотока в скелетные мышцы: ключевая роль питающих артерий. Acta Physiol Scand. 2000 г., апрель; 168 (4): 511-8. [PubMed: 10759588]

    19.

    Додд Л.Р., Джонсон, ПК. Изменения диаметра артериолярных сетей сокращающихся скелетных мышц. Am J Physiol. 1991 март; 260 (3 часть 2): H662-70. [PubMed: 2000963]

    20.

    Heuser JE, Salpeter SR. Организация ацетилхолиновых рецепторов в постсинаптической мембране быстрозамороженных, глубоко протравленных и ротационно-реплицированных Torpedo. Джей Селл Биол. 1979 июля; 82 (1): 150-73. [Бесплатная статья PMC: PMC2110412] [PubMed: 479296]

    21.

    Slater CR. Структура нервно-мышечных соединений человека: некоторые молекулярные вопросы без ответов. Int J Mol Sci. 2017 Oct 19;18(10) [бесплатная статья PMC: PMC5666864] [PubMed: 2

    68]

    22.

    Caire MJ, Reddy V, Varacallo M. StatPearls [Интернет]. Издательство StatPearls; Остров сокровищ (Флорида): 26 марта 2022 г. Физиология, Synapse. [PubMed: 30252303]

    23.

    Wu H, Xiong WC, Mei L. Чтобы построить синапс: сигнальные пути в сборке нервно-мышечных соединений. Разработка. 2010 г., апрель; 137(7):1017-33. [Бесплатная статья PMC: PMC2835321] [PubMed: 20215342]

    24.

    Ottenheijm CA, Granzier H. Подъем туманности: новый взгляд на сократимость скелетных мышц. Физиология (Bethesda). 2010 Октябрь; 25 (5): 304-10. [PubMed: 20940435]

    25.

    Jayasinghe ID, Launikonis BS. Трехмерная реконструкция и анализ трубчатой ​​системы скелетных мышц позвоночных. Дж. Клеточные науки. 01 сентября 2013 г.; 126 (часть 17): 4048-58. [В паблике: 23813954]

    26.

    Shamrock AG, Varacallo M. StatPearls [Интернет]. Издательство StatPearls; Остров сокровищ (Флорида): 4 сентября 2022 г. Разрыв ахиллова сухожилия. [PubMed: 28613594]

    27.

    Джуриато Г., Педринолла А., Шена Ф., Вентурелли М. Мышечные спазмы: сравнение двух ведущих гипотез. J Электромиогр Кинезиол. 2018 авг;41:89-95. [PubMed: 29857264]

    28.

    Бордони Б., Варакалло М. StatPearls [Интернет]. Издательство StatPearls; Остров сокровищ (Флорида): 5 апреля 2022 г. Анатомия, голова и шея, грудино-ключично-сосцевидная мышца. [В паблике: 30422476]

    29.

    Hicks BL, Lam JC, Varacallo M. StatPearls [Интернет]. Издательство StatPearls; Остров сокровищ (Флорида): 4 сентября 2022 г. Синдром грушевидной мышцы. [PubMed: 28846222]

    30.

    Warner MJ, Hutchison J, Varacallo M. StatPearls [Интернет]. Издательство StatPearls; Остров сокровищ (Флорида): 4 сентября 2022 г. Паралич Белла. [PubMed: 29493915]

    31.

    Алексенко Д., Варакалло М. StatPearls [Интернет]. Издательство StatPearls; Остров сокровищ (Флорида): 4 сентября 2022 г. Синдром канала Гийона. [В паблике: 28613717]

    32.

    Пестер Дж. М., Варакалло М. StatPearls [Интернет]. Издательство StatPearls; Остров сокровищ (Флорида): 4 сентября 2022 г. Методы блокады локтевого нерва. [PubMed: 29083721]

    33.

    Ахонди Х., Варакалло М. StatPearls [Интернет]. Издательство StatPearls; Остров сокровищ (Флорида): 4 сентября 2022 г. Передний межкостный синдром. [PubMed: 30247831]

    34.

    Бьюкенен Б.К., Майни К., Варакалло М. StatPearls [Интернет]. Издательство StatPearls; Остров сокровищ (Флорида): 4 сентября 2022 г. Защемление лучевого нерва. [В паблике: 28613749]

    35.

    Sevy JO, Varacallo M. StatPearls [Интернет]. Издательство StatPearls; Остров сокровищ (Флорида): 5 сентября 2022 г. Синдром запястного канала. [PubMed: 28846321]

    36.

    Пестер Дж.М., Бехманн С., Варакалло М. StatPearls [Интернет]. Издательство StatPearls; Остров сокровищ (Флорида): 4 сентября 2022 г. Методы блокады срединного нерва. [PubMed: 29083641]

    37.

    Бишоп К.Н., Варакалло М. StatPearls [Интернет]. Издательство StatPearls; Остров сокровищ (Флорида): 25 июля 2022 г. Анатомия, плечо и верхняя конечность, задний лопаточный нерв. [В паблике: 29083775]

    38.

    Мерриман Дж., Варакалло М. StatPearls [Интернет]. Издательство StatPearls; Остров сокровищ (Флорида): 4 сентября 2022 г. Паралич Клюмпке. [PubMed: 30285395]

    Анатомия скелетных мышц — StatPearls

    Введение

    Скелетно-мышечная система представляет собой одну из основных систем тканей/органов в организме. Тремя основными типами мышечной ткани являются группы скелетных, сердечных и гладких мышц.[1][2][3] Скелетные мышцы прикрепляются к костям сухожилиями, и вместе они производят все движения тела. Скелетные мышечные волокна пересекаются регулярным рисунком из тонких красных и белых линий, что придает мышце характерный исчерченный вид. Следовательно, они также известны как поперечно-полосатые мышцы.

    Структура и функция

    Скелетная мышца является одной из трех основных мышечных тканей в организме человека. Каждая скелетная мышца состоит из тысяч мышечных волокон, обернутых вместе оболочками из соединительной ткани. Отдельные пучки мышечных волокон в скелетной мышце известны как пучки. Самая наружная соединительнотканная оболочка, окружающая всю мышцу, известна как эпимизий. Соединительнотканная оболочка, покрывающая каждый пучок, известна как перимизий, а самая внутренняя оболочка, окружающая отдельное мышечное волокно, известна как эндомизий.] Каждое мышечное волокно состоит из ряда миофибрилл, содержащих несколько миофиламентов.

    Когда все миофибриллы собираются вместе, они выстраиваются в уникальную полосатую структуру, образуя саркомеры, которые являются основной сократительной единицей скелетной мышцы. Двумя наиболее важными миофиламентами являются актиновые и миозиновые филаменты, расположенные по-разному, образуя различные полосы на скелетных мышцах. Стволовые клетки, которые дифференцируются в зрелые мышечные волокна, известны как сателлитные клетки, которые можно найти между базальной мембраной и сарколеммой (клеточная мембрана, окружающая клетку поперечно-полосатых мышечных волокон).[10] При стимуляции факторами роста они дифференцируются и размножаются, образуя новые клетки мышечных волокон.[11]

    Основные функции скелетных мышц осуществляются за счет внутреннего процесса сопряжения возбуждения и сокращения. Поскольку мышца прикреплена к костным сухожилиям, сокращение мышцы приводит к движению этой кости, что позволяет выполнять определенные движения. Скелетная мышца также обеспечивает структурную поддержку и помогает поддерживать осанку тела. Скелетные мышцы также служат источником хранения аминокислот, которые различные органы тела могут использовать для синтеза специфических для органов белков.[12] Скелетные мышцы также играют центральную роль в поддержании термостаза и служат источником энергии во время голодания.[9]]

    Эмбриология

    Различные механизмы транскрипции и специфическая регуляторная активность генов контролируют дифференцировку мышечных волокон. [13] Во время эмбриогенеза парааксиальная мезодерма подвергается ступенчатой ​​дифференцировке с образованием мышечной ткани. Парааксиальная мезодерма по обе стороны от нервной трубки начинает дифференцироваться и подвергается сегментации с образованием сомитов. Сомиты стимулируются миогенными регулирующими факторами, чтобы дифференцироваться в дермомиотом и склеротом. Эти регуляторные факторы включают белки Wnt, Shh и BMP4. Нервная трубка и поверхностная эктодерма являются первичными источниками белков Wnt, белки Shh (Sonic hedgehog) являются источником хорды, а пластинка латеральной мезодермы продуцирует белок BMP4. Латеральная часть дермомиотома претерпевает переход от эпителия к мезенхиме, поскольку он продолжает мигрировать на вентральную сторону, образуя уникальный миотом ниже дерматома.

    Затем миотом дифференцируется, образуя скелетные мышцы тела, после стимуляции сигнальной молекулой Sonic Hedgehog (Shh) из хорды, что приводит к экспрессии Myf5 и последующей дифференцировке. [15] Дорсомедиальная часть миотома дифференцируется в эпаксиальный миотом, дающий начало мышцам спины. Вентролатеральный аспект дифференцируется в гипаксиальный миотом , который дает начало мышцам стенки тела.

    Несколько сигнальных молекул, таких как Wnt и BMP, и некоторые транскрипционные факторы, такие как гомеобокс sine oculis, ответственны за эту дифференциацию. Развитие скелетных мышц конечностей и туловища зависит от экспрессии MyoD и Myf5 и их влияния на различные миобласты.[16] Эти эмбриональные миобласты подвергаются дальнейшей дифференциации с образованием первичных мышечных волокон и, в конечном итоге, вторичных миофибрилл путем объединения миобластов у плода. После рождения клетки-сателлиты действуют как стволовые клетки и отвечают за дальнейший рост и развитие скелетных мышц.

    Кровоснабжение и лимфатическая система

    Первичная артерия, снабжающая кровью конкретную скелетную мышцу, обычно проходит параллельно продольной оси мышечного волокна.[17] Первичная артерия отдает притоки, известные как питающие артерии, которые проходят перпендикулярно первичной артерии и направляются к внешней соединительнотканной оболочке мышечного волокна, называемой перимизием. [18] Питающая артерия разветвляется на первичные артериолы, которые после еще двух порядков ветвления дают начало поперечным артериолам, которые, в свою очередь, дают терминальные артериолы.[19]] Терминальные артериолы являются конечными сосудистыми ветвями, и они перфузируют капилляры, которые присутствуют в эндомизии, и проходят параллельно продольной оси мышечного волокна. Терминальная артериола вместе с капиллярами, которые она питает, известна как микрососудистая единица. Это наименьшая единица скелетной мышцы, в которой можно регулировать кровоток.

    Лимфатические капилляры берут начало в скелетных мышцах в микроваскулярной единице внутри эндомизия рядом с основным капиллярным руслом и дренируют тканевую жидкость. Эти капилляры сливаются, образуя лимфатические сосуды по мере дренирования тканевой жидкости. Эти лимфатические сосуды проходят через перимизий и соединяются с более крупными лимфатическими сосудами. В отличие от кровеносных сосудов, стенки лимфатических сосудов внутри мышц не обладают сократительной способностью из-за отсутствия гладких мышц (в стенке), поэтому они зависят от движения мышц и пульсации артериол для оттока лимфы.

    Нервы

    Нейронная иннервация скелетных мышц обычно включает чувствительные нервные волокна, двигательные нервные волокна и нервно-мышечное соединение. Нервные волокна состоят из миелиновых и немиелинизированных нервных волокон. Тела клеток нейронов дают начало большим аксонам, которые обычно неразветвлены и направляются к целевым мышцам для иннервации. Рядом с мышцей-мишенью аксоны делятся на несколько меньших ветвей, иннервирующих несколько мышечных волокон. Окончание двигательного нерва имеет обильные митохондрии, эндоплазматический ретикулум и многочисленные связанные с мембраной синаптические пузырьки, содержащие нейротрансмиттер-ацетилхолин.[20] Как только потенциал действия достигает нервно-мышечного соединения, происходит ряд процессов, кульминацией которых является слияние мембраны синаптических пузырьков с пресинаптической мембраной и последующее высвобождение нейротрансмиттера в синаптическую щель.[21][22]

    Постсинаптическая мембрана мышечных волокон имеет массивную концентрацию рецепторов нейротрансмиттеров (АХР). Эти рецепторы представляют собой трансмембранные лиганд-управляемые ионные каналы.[23] Как только нейротрансмиттер активирует эти ионные каналы, происходит быстрая деполяризация моторной концевой пластинки, которая инициирует потенциал действия в мышечном волокне, что приводит к сокращению мышц.[21]

    Мышцы

    Каждая мышца состоит из нескольких тканей, включая кровеносные сосуды, лимфатические сосуды, сократительные мышечные волокна и оболочки из соединительной ткани. Наружная оболочка соединительной ткани, покрывающая каждую мышцу, называется эпимизием. Каждая мышца состоит из групп мышечных волокон, называемых пучками, окруженных слоем соединительной ткани, называемым перимизием. Несколько единиц отдельных мышечных волокон внутри каждого пучка окружены эндомизием, соединительнотканной оболочкой. Двумя наиболее важными миофиламентами, составляющими сократительные элементы мышечного волокна, являются актин и миозин. Они отчетливо расположены в виде полосатого рисунка, образуя темную полосу A, светлую полосу I и основную единицу сокращения, также называемую саркомером.

    Саркомер состоит из центральной М-линии, к которой с обеих сторон прикреплены толстые миофиламенты миозина. Это формирует темную полосу А. Саркомер граничит с Z-линией, которая служит местом происхождения тонких миофиламентов актина, которые выступают друг к другу, поскольку они частично перекрывают миозиновые филаменты. [9] Регуляторные белки, а именно тропонин C, I, T , и тропомиозин играют ключевую роль в механизме скольжения миофиламентов, приводящем к сокращению. Титин и небулин — другие основные белки, влияющие на механические свойства мышц.[24] Существует уникальная система Т-трубочек для проведения потенциала действия нейронов внутрь мышечной клетки через инвагинации сарколеммы для улучшения координации и равномерного мышечного сокращения.[25]

    Клиническое значение

    Скелетные мышцы позволяют человеку двигаться и выполнять повседневные действия. Они играют важную роль в дыхательной механике и помогают поддерживать осанку и равновесие. Они также защищают жизненно важные органы в организме.

    Различные заболевания возникают в результате нарушения функции скелетных мышц. К таким заболеваниям относятся миопатия, паралич, миастения, недержание мочи и/или кишечника, атаксия, слабость, тремор и другие. Заболевания нервов могут вызывать невропатию и вызывать нарушения функциональности скелетных мышц. Кроме того, разрывы скелетных мышц/сухожилий могут возникать остро у спортсменов высокого уровня или участников любительских видов спорта и приводить к значительной инвалидности у всех пациентов, независимо от статуса активности.[26]

    Мышечные спазмы

    Мышечные судороги приводят к непрерывным, непроизвольным, болезненным и локальным сокращениям всей группы мышц, отдельных мышц или отдельных мышечных волокон.[3] Как правило, судороги могут длиться от минут до нескольких секунд по идиопатическим или известным причинам у здоровых субъектов или при наличии заболеваний. При пальпации мышечной области судороги выявляется узел.

    Мышечные судороги, связанные с физической нагрузкой, являются наиболее частым состоянием, требующим медицинского/терапевтического вмешательства во время занятий спортом. [27] Конкретная этиология недостаточно изучена, и возможные причины зависят от физиологической или патологической ситуации, в которой появляются судороги. Важно отметить, что болезненное сокращение, ограниченное определенной областью, не означает, что причина возникновения судорог обязательно локальна.

    В определенных клинических сценариях основная этиология может быть связана с постоянными спастическими мышечными сокращениями, которые могут существенно повлиять на функцию человека. Типичный пример этого состояния проявляется в грудино-ключично-сосцевидной мышце. Клинически это распознается при врожденной кривошеи или спастической кривошеи.[28]

    Другие соответствующие состояния в этой области включают, но не ограничиваются следующим:0005

  • Синдром грушевидной мышцы [6] [29]

  • Синдром грудной апертуры (гипертрофия / спастичность лестничных мышц) [5]

  • Паралич/компрессионная невропатия

    На противоположном конце спектра существуют различные мышечные параличи, вторичные по отношению к долгосрочным нижестоящим последствиям различных нервных заболеваний и невропатий, потенциально приводящих к вялым состояниям (которые могут быть постоянными или временными).

    Эти синдромы и состояния включают, но не ограничиваются следующим:

    • Паралич Белла[30]

    • Синдром канала Гийона[31][32]

    • Синдром AIN или синдром PIN [33][34]

    • 9 9 Средний нерв в запястном туннеле) [35] [36]

    • Supraspinatus и/или Atrophy Infraspinatus [37]

    • Клампке Палич [38]

    Обзор.

    9008
  • 99999999999444494499444999449

    49949949999499499499499499

    49499

    9499994999999949994999

    494949999999999499999999994999999999.
  • . вопросы по этой теме.

  • Прокомментируйте эту статью.

  • Рисунок

    Скелетные мышцы, сарколемма, миофибриллы, двигательный нейрон, кровеносный капилляр, эндомизий, мышечное волокно (клетка), пучок, перимизий, кровеносные сосуды, эпимизий, сухожилие, глубокая фасция. Иллюстрация Эммы Грегори. Кости и скелетные мышцы: ключевые игроки в механотрансдукции и потенциальные механизмы перекрытия. Кость. 2015 ноябрь;80:24-36. [Бесплатная статья PMC: PMC4600534] [PubMed: 26453495]

    2.

    Wilke J, Engeroff T, Nürnberger F, Vogt L, Banzer W. Анатомическое исследование морфологической непрерывности между подвздошно-большеберцовым трактом и длинной малоберцовой фасцией. Сур Радиол Анат. 2016 Апрель; 38 (3): 349-52. [PubMed: 26522465]

    3.

    Бордони Б., Сугумар К., Варакалло М. StatPearls [Интернет]. Издательство StatPearls; Остров сокровищ (Флорида): 4 сентября 2022 г. Мышечные спазмы. [PubMed: 29763070]

    4.

    Бордони Б., Варакалло М. StatPearls [Интернет]. Издательство StatPearls; Остров сокровищ (Флорида): 18 июля 2022 г. Анатомия, сухожилия. [В паблике: 30020609]

    5.

    Бордони Б., Варакалло М. StatPearls [Интернет]. Издательство StatPearls; Остров сокровищ (Флорида): 16 апреля 2022 г. Анатомия, голова и шея, лестничная мышца. [PubMed: 30085600]

    6.

    Чанг А. , Ли Н., Варакалло М. StatPearls [Интернет]. Издательство StatPearls; Остров сокровищ (Флорида): 4 сентября 2022 г. Инъекция грушевидной формы. [PubMed: 28846327]

    7.

    Борн М., Талкад А., Варакалло М. StatPearls [Интернет]. Издательство StatPearls; Остров сокровищ (Флорида): 8 августа 2022 г. Анатомия, костный таз и нижняя конечность, фасция стопы. [В паблике: 30252299]

    8.

    Бордони Б., Махабади Н., Варакалло М. StatPearls [Интернет]. Издательство StatPearls; Остров сокровищ (Флорида): 18 июля 2022 г. Анатомия, фасция. [PubMed: 29630284]

    9.

    Frontera WR, Ochala J. Скелетные мышцы: краткий обзор структуры и функции. Кальциф ткани Int. 2015 март; 96(3):183-95. [PubMed: 25294644]

    10.

    Хикида Р.С. Возрастные изменения сателлитных клеток и их функции. Curr Старение Sci. 2011 Декабрь;4(3):279-97. [PubMed: 21529324]

    11.

    Stone WL, Leavitt L, Varacallo M. StatPearls [Интернет]. Издательство StatPearls; Остров сокровищ (Флорида): 8 мая 2022 г. Физиология, фактор роста. [PubMed: 28723053]

    12.

    Вулф Р.Р. Недооцененная роль мышц в здоровье и болезни. Am J Clin Nutr. 2006 г., сен; 84 (3): 475-82. [PubMed: 16960159]

    13.

    Букингем М., Ригби П.В. Сети регуляции генов и механизмы транскрипции, контролирующие миогенез. Ячейка Дев. 2014 10 февраля; 28 (3): 225-38. [В паблике: 24525185]

    14.

    Эрнандес-Эрнандес Х.М., Гарсия-Гонсалес Э.Г., Брун К.Е., Рудницкий М.А. Миогенные регуляторные факторы, детерминанты развития мышц, идентичности клеток и регенерации. Semin Cell Dev Biol. 2017 дек;72:10-18. [Бесплатная статья PMC: PMC5723221] [PubMed: 29127045]

    15.

    Борицкий А.Г., Бранк Б., Таджбахш С., Букингем М., Чан С., Эмерсон С.П. Sonic hedgehog контролирует определение эпаксиальных мышц посредством активации Myf5. Разработка. 1999 сентября; 126 (18): 4053-63. [PubMed: 10457014]

    16.

    Каблар Б., Крастел К., Ин С., Асакура А., Тапскотт С.Дж., Рудницки М.А. MyoD и Myf-5 по-разному регулируют развитие скелетных мышц конечностей и туловища. Разработка. 1997 декабрь; 124 (23): 4729-38. [PubMed: 9428409]

    17.

    Bagher P, Segal SS. Регуляция кровотока в микроциркуляторном русле: роль проводимой вазодилатации. Acta Physiol (Oxf). 2011 июль; 202(3):271-84. [Бесплатная статья PMC: PMC3115483] [PubMed: 21199397]

    18.

    Сегал СС. Интеграция контроля кровотока в скелетные мышцы: ключевая роль питающих артерий. Acta Physiol Scand. 2000 г., апрель; 168 (4): 511-8. [PubMed: 10759588]

    19.

    Додд Л.Р., Джонсон, ПК. Изменения диаметра артериолярных сетей сокращающихся скелетных мышц. Am J Physiol. 1991 март; 260 (3 часть 2): H662-70. [PubMed: 2000963]

    20.

    Heuser JE, Salpeter SR. Организация ацетилхолиновых рецепторов в постсинаптической мембране быстрозамороженных, глубоко протравленных и ротационно-реплицированных Torpedo. Джей Селл Биол. 1979 июля; 82 (1): 150-73. [Бесплатная статья PMC: PMC2110412] [PubMed: 479296]

    21.

    Slater CR. Структура нервно-мышечных соединений человека: некоторые молекулярные вопросы без ответов. Int J Mol Sci. 2017 Oct 19;18(10) [бесплатная статья PMC: PMC5666864] [PubMed: 2

    68]

    22.

    Caire MJ, Reddy V, Varacallo M. StatPearls [Интернет]. Издательство StatPearls; Остров сокровищ (Флорида): 26 марта 2022 г. Физиология, Synapse. [PubMed: 30252303]

    23.

    Wu H, Xiong WC, Mei L. Чтобы построить синапс: сигнальные пути в сборке нервно-мышечных соединений. Разработка. 2010 г., апрель; 137(7):1017-33. [Бесплатная статья PMC: PMC2835321] [PubMed: 20215342]

    24.

    Ottenheijm CA, Granzier H. Подъем туманности: новый взгляд на сократимость скелетных мышц. Физиология (Bethesda). 2010 Октябрь; 25 (5): 304-10. [PubMed: 20940435]

    25.

    Jayasinghe ID, Launikonis BS. Трехмерная реконструкция и анализ трубчатой ​​системы скелетных мышц позвоночных. Дж. Клеточные науки. 01 сентября 2013 г.; 126 (часть 17): 4048-58. [В паблике: 23813954]

    26.

    Shamrock AG, Varacallo M. StatPearls [Интернет]. Издательство StatPearls; Остров сокровищ (Флорида): 4 сентября 2022 г. Разрыв ахиллова сухожилия. [PubMed: 28613594]

    27.

    Джуриато Г., Педринолла А., Шена Ф., Вентурелли М. Мышечные спазмы: сравнение двух ведущих гипотез. J Электромиогр Кинезиол. 2018 авг;41:89-95. [PubMed: 29857264]

    28.

    Бордони Б., Варакалло М. StatPearls [Интернет]. Издательство StatPearls; Остров сокровищ (Флорида): 5 апреля 2022 г. Анатомия, голова и шея, грудино-ключично-сосцевидная мышца. [В паблике: 30422476]

    29.

    Hicks BL, Lam JC, Varacallo M. StatPearls [Интернет]. Издательство StatPearls; Остров сокровищ (Флорида): 4 сентября 2022 г. Синдром грушевидной мышцы. [PubMed: 28846222]

    30.

    Warner MJ, Hutchison J, Varacallo M. StatPearls [Интернет]. Издательство StatPearls; Остров сокровищ (Флорида): 4 сентября 2022 г. Паралич Белла. [PubMed: 29493915]

    31.

    Алексенко Д., Варакалло М. StatPearls [Интернет]. Издательство StatPearls; Остров сокровищ (Флорида): 4 сентября 2022 г. Синдром канала Гийона. [В паблике: 28613717]

    32.

    Пестер Дж. М., Варакалло М. StatPearls [Интернет]. Издательство StatPearls; Остров сокровищ (Флорида): 4 сентября 2022 г. Методы блокады локтевого нерва. [PubMed: 29083721]

    33.

    Ахонди Х., Варакалло М. StatPearls [Интернет]. Издательство StatPearls; Остров сокровищ (Флорида): 4 сентября 2022 г. Передний межкостный синдром. [PubMed: 30247831]

    34.

    Бьюкенен Б.К., Майни К., Варакалло М. StatPearls [Интернет]. Издательство StatPearls; Остров сокровищ (Флорида): 4 сентября 2022 г. Защемление лучевого нерва. [В паблике: 28613749]

    35.