Липидный обмен — Википедия
Липидный обмен — или метаболизм липидов, представляет собой сложный биохимический и физиологический процесс, происходящий в некоторых клетках живых организмов.
Липидный обмен включает в себя следующие процессы:
Общие сведения о липидах
Термин «липиды» объединяет вещества, обладающие общим физическим свойством — гидрофобностью, то есть нерастворимостью в воде. Однако такое определение в настоящее время является не совсем корректным ввиду, того, что некоторые группы (триацилглицерины, фосфолипиды, сфинголипиды и др.) проявляют себя как амфифильные или дифильные соединения, т.е. способные растворяться как в полярных веществах (гидрофильность), так и в неполярных (гидрофобность). По структуре липиды настолько разнообразны, что у них отсутствует общий признак химического строения. Липиды разделяют на классы, в которые объединяют молекулы, имеющие сходное химическое строение и общие биологические свойства.
Основную массу липидов в организме составляют жиры — триацилглицеролы, служащие формой депонирования энергии. Жиры располагаются преимущественно в подкожной жировой ткани и выполняют также функции теплоизоляционной и механической защиты.
Фосфолипиды — большой класс липидов, получивший своё название из-за остатка фосфорной кислоты, придающего им свойства амфифильности. Благодаря этому свойству фосфолипиды формируют бислойную структуру мембран, в которую погружены белки. Клетки или отделы клеток, окружённые мембранами, отличаются по составу и набору молекул от окружающей среды, поэтому химические процессы в клетке разделены и ориентированы в пространстве, что необходимо для регуляции метаболизма.
Стероиды, представленные в животном мире холестеролом и его производными, выполняют разнообразные функции. Холестерол — важный компонент мембран и регулятор свойств гидрофобного слоя. Производные холестерола (жёлчные кислоты) необходимы для переваривания жиров. Стероидные гормоны, синтезируемые из холестерола, участвуют в регуляции энергетического, водно-солевого обменов, половых функций. Кроме стероидных гормонов, многие производные липидов выполняют регуляторные функции и действуют, как и гормоны, в очень низких концентрациях. Например, тромбоцитактивирующий фактор — фосфолипид особой структуры — оказывает сильное влияние на агрегацию тромбоцитов в концентрации 10-12 М; эйкозаноиды, производные полиеновых жирных кислот, вырабатываемые почти всеми типами клеток, вызывают разнообразные биологические эффекты в концентрациях не более 10-9 М. Из приведённых примеров следует, что липиды обладают широким спектром биологических функций.
В тканях человека количество разных классов липидов существенно различается. В жировой ткани жиры составляют до 75 % сухого веса. В нервной ткани липидов содержится до 50 % сухого веса, основные из них фосфолипиды и сфингомиелины (30 %), холестерол (10 %), ганглиозиды и цереброзиды (7 %). В печени общее количество липидов в норме не превышает 10-13 %.
Нарушения обмена липидов приводят к развитию многих заболеваний, но среди людей наиболее распространены два из них — ожирение и атеросклероз.
Расщепление, переваривание и всасывание пищевых липидов
Суточная потребность человека в жирах составляет 70-80 г, хотя в пищевом рационе их содержание может колебаться от 80 до 130 г.
Переваривание липидов в желудке
В желудке имеется фермент липаза, способный катализировать расщепление триацилглицеролов. Однако оптимальной средой ее действия является среда, близкая к нейтральной. Поэтому липаза в желудке у взрослых людей практически неактивна из-за малых значений pH.
Переваривание липидов в кишечнике
В двенадцатиперстной кишке пища подвергается действию желчи и сока поджелудочной железы. На первом этапе там происходит эмульгирование жиров
Эмульгирование жиров
Жиры составляют до 90 % липидов, поступающих с пищей. Переваривание жиров происходит в тонком кишечнике, однако уже в желудке небольшая часть жиров гидролизуется под действием «липазы языка». Этот фермент синтезируется железами на дорсальной поверхности языка и относительно устойчив при кислых значениях рН желудочного сока. Поэтому он действует в течение 1-2 ч на жиры пищи в желудке. Однако вклад этой липазы в переваривание жиров у взрослых людей незначителен. Основной процесс переваривания происходит в тонкой кишке.
Так как жиры — нерастворимые в воде соединения, то они могут подвергаться действию ферментов, растворённых в воде только на границе раздела фаз вода/жир. Поэтому действию панкреатической липазы, гидролизующей жиры, предшествует эмульгирование жиров. Эмульгирование (смешивание жира с водой) происходит в тонком кишечнике под действием солей жёлчных кислот. Жёлчные кислоты представляют собой в основном конъюгированные жёлчные кислоты: таурохолевую, гликохолевую и другие кислоты.
Гормоны, активирующие переваривание жиров
При поступлении пищи в желудок, а затем в кишечник клетки слизистой оболочки тонкого кишечника начинают секретировать в кровь пептидный гормон холецистокинин (панкреозимин). Этот гормон действует на жёлчный пузырь, стимулируя его сокращение, и на экзокринные клетки поджелудочной железы, стимулируя секрецию пищеварительных ферментов, в том числе панкреатической липазы. Другие клетки слизистой оболочки тонкого кишечника в ответ на поступление из желудка кислого содержимого выделяют гормон секретин. Секретин — гормон пептидной природы, стимулирующий секрецию гидрокарбоната (НСО
Нарушения переваривания и всасывания жиров
Нарушение переваривания жиров может быть следствием нескольких причин. Одна из них — нарушение секреции жёлчи из жёлчного пузыря при механическом препятствии оттоку жёлчи. Это состояние может быть результатом сужения просвета жёлчного протока камнями, образующимися в жёлчном пузыре, или сдавлением жёлчного протока опухолью, развивающейся в окружающих тканях. Уменьшение секреции жёлчи приводит к нарушению эмульгирования пищевых жиров и, следовательно, к снижению способности панкреатической липазы гидролизовать жиры.
Нарушение секреции сока поджелудочной железы и, следовательно, недостаточная секреция панкреатической липазы также приводят к снижению скорости гидролиза жиров. В обоих случаях нарушение переваривания и всасывания жиров приводит к увеличению количества жиров в фекалиях — возникает стеаторея (жирный стул). В норме содержание жиров в фекалиях составляет не более 5%. При стеаторее нарушается всасывание жирорастворимых витаминов (A, D, E, К) и незаменимых жирных кислот, поэтому при длительно текущей стеаторее развивается недостаточность этих незаменимых факторов питания с соответствующими клиническими симптомами. При нарушении переваривания жиров плохо перевариваются и вещества нелипидной природы, так как жир обволакивает частицы пищи и препятствует действию на них ферментов.
Всасывание липидов в кишечнике
Ресинтез жиров в слизистой оболочке тонкого кишечника
Основная часть всосавшихся в тонком кишечнике липидов принимает участие в ресинтезе триацилглицеринов. Для этого в эндоплазматическом ретикулуме энтероцитов работают специальные ферменты
Факторы, влияющие на всасывание липидов
Катаболизм липидов
Катаболизм липидов — совокупность всех катаболических процессов липидов, включающая несколько стадий:
Липолиз
Липолиз — катаболический процесс, результатом которого является расщепление жиров, происходящее под действием фермента липазы.
Окисление жирных кислот
β-Окисление жирных кислот
Процесс β-окисления высших жирных кислот (ВЖК) складывается из следующих этапов:
- активация ВЖК на наружной поверхности мембраны митохондрий при участии АТФ, кофермента А и ионов магния с образованием активной формы ВЖК (ацил — КоА).
- транспорт жирных кислот внутрь митохондрий возможен при присоединении активной формы жирной кислоты к карнитину, находящемуся на наружной поверхности внутренней мембраны митохондрий. Образуется ацил-карнитин, обладающий способностью проходить через мембрану. На внутренней поверхности комплекс распадается и карнитин возвращается на наружную поверхность мембраны.
- внутримитохондриальное окисление жирных кислот состоит из последовательных ферментативных реакций. В результате одного завершенного цикла окисления происходит отщепление от жирной кислоты одной молекулы ацетил-КоА, т.е. укорочение жирнокислотной цепи на два углеродных атома. При этом в результате двух дегидрогеназных реакций восстанавливается ФАД до ФАДН 2 и НАД+ до НАДН2. Таким образом завершая 1 цикл β—окисления ВЖК, в результате которого ВЖК укоротилось на 2 углеродных звена. При β-окислении выделилось 5АТФ и 12АТФ выделилось при окислении ацетил-КоА в цикле Кребса и сопряженных с ним ферментов дыхательной цепи. Окисление ВЖК будет происходить циклически одинаково, но только до последней стадии — стадии превращения масляной кислоты (бутирил-КоА), которая имеет свои особенности, которые необходимо учитывать при подсчёте суммарного энергетического эффекта окисления ВЖК, когда в результате одного цикла образуется 2 молекулы ацетил-КоА, одна из них проходила β-окисление с выделением 5АТФ, а другая нет.
ω-Окисление жирных кислот
Хотя для жирных кислот наиболее характерно β-окисление, встречаются также два других типа окисления: α-и ω-окисления. Окисление жирных кислот с длинной цепью до 2-оксикислот и затем до жирных кислот с числом атомов углерода на один меньше, чем в исходном субстрате, было показано в микросомах мозга и других тканей, а также в растениях. 2-Оксикислоты с длинной цепью являются компонентами липидов мозга.
Окисление ненасыщенных жирных кислот
Около половины жирных кислот в организме человека ненасыщенные. β-Окисление этих кислот идёт обычным путём до тех пор, пока двойная связь не окажется между третьим и четвёртым атомами углерода. Затем фермент еноил-КоА изомераза перемещает двойную связь из положения 3-4 в положение 2-3 и изменяет цис-конформацию двойной связи на транс-, которая требуется для β-окисления. В этом цикле β-окисления первая реакция дегидрирования не происходит, так как двойная связь в радикале жирной кислоты уже имеется. Далее циклы β-окисления продолжаются, не отличаясь от обычного пути.
Нарушения окисления жирных кислот
Нарушение переноса жирных кислот в митохондрии.
Скорость переноса жирных кислот внутрь митохондрий, а следовательно и скорость процесса β-окисления, зависит от доступности карнитина и скорости работы фермента карнитинацилтрансферазы I.
β-Окисление могут нарушать следующие факторы:
- длительный гемодиализ, в ходе которого организм теряет карнитин;
- длительная ацидурия, при которой карнитин выводится как основание с органическими кислотами;
- лечение больных сахарным диабетом препаратами сульфонилмочевины, ингибирующими карнитинацилтрансферазу I;
- низкая активность ферментов, синтезирующих карнитин;
- наследственные дефекты карнитинацил-трансферазы I.
Окисление кетоновых тел
При длительном голодании кетоновые тела становятся основным источником энергии для скелетных мышц, сердца и почек. Таким образом глюкоза сохраняется для окисления в мозге и эритроцитах. Уже через 2-3 дня после начала голодания концентрация кетоновых тел в крови достаточна для того, чтобы они проходили в клетки мозга и окислялись, снижая его потребности в глюкозе.
Перекисное окисление липидов
Кислород, необходимый организму для функционирования ЦПЭ и многих других реакций, является одновременно и токсическим веществом, если из него образуются так называемые активные формы.
К активным формам кислорода относят:
Анаболизм липидов
Липогенез
Липогенез — процесс синтеза жирных кислот, основным источником которого является углеводы.
С пищей в организм поступают разнообразные жирные кислоты, в том числе и незаменимые. Значительная часть заменимых жирных кислот синтезируется в печени, в меньшей степени — в жировой ткани и лактирующей молочной железе. Источником углерода для синтеза жирных кислот служит ацетил-КоА, образующийся при распаде глюкозы в абсорбтивном периоде. Таким образом, избыток углеводов, поступающих в организм, трансформируется в жирные кислоты, а затем в жиры.
Синтез кетоновых тел
Все кетоновые тела берут начало от ацетоацетил-КоА, который образуется при конденсации 2-х молекул ацетил-КоА по принципу «голова в хвост». Реакция когденсации происходит в митохондриях. В печени ацетоацетил-КоА взаимодействует еще с одной молекулой ацетил-КоА и превращается в ГОМГ-КоА- важное промежуточное вещество для синтеза холестерола и стероидов.
Взаимопревращения жирных кислот
Организм получает жирные кислоты из пищи и путём липогенеза из ацетил-КоА, образующегося из углеводов и некоторых аминокислот. Состав смеси жирных кислот пищи существенно варьирует по степени ненасыщенности и длине цепи. Липогенез у высших животных включает только образование пальмитата, из которого образуются другие насыщенные и мононенасыщенные кислоты. Из смеси имеющихся жирных кислот в печени животного образуется свойственный данному виду набор жирных кислот; однако на характере синтезируемых жирных кислот сказывается также и диета. Процессы утилизации жирных кислот пищи включают укорочение и удлинение углеродного скелета, так же как и введение двойной связи.
Обмен фосфолипидов
Фосфолипиды выполняют ряд важных биологических функций. Как большинство полярных липидов, они являются амфифильными соединениями, несущими гидрофобные и гидрофильные группы. Некоторые фосфолипиды, например фосфатидилхолин, представляют собой диполярные ионы, обладающие катионной и анионной группами, и являются основными компонентами клеточных мембранных систем. Например, в миелиновом волокне нерва фосфолипиды и цереброзиды составляют приблизительно 60% сухого веса.
Распределение и обмен
Среди липидов тела фосфолипиды распределены неравномерно. Богатыми источниками фосфолипидов являются липиды тканей различных желез, в особенности печени, а также плазма крови, где они могут составлять до половины всех липидов. Фосфолипиды являются также преобладающими липидами в желтках птичьих яиц и в семенах бобовых растений. Обмен различных фосфолипидов в определенных местах животного организма изучали с использованием различных изотопов, наиболее часто 32Р. Период полупревращения этих липидов колеблется от менее одного дня для фосфатидилхолина печени до более 200 сут для фосфатидилэтаноламина мозга.
Образование
Обмен холестерола
Холестерол — основной стероид организма животных. У взрослого человека содержание холестерола составляет 140–150 г. Около 93% стероида входит в состав мембран и 7% находится в жидкостях организма. Холестерол увеличивает микровязкость мембран и снижает их проницаемость для Н2О и водорастворимых веществ. В крови он представлен в виде свободного холестерола, входящего в оболочку липопротеинов, и его эфиров, которые вместе с ТАГ составляют внутреннее содержимое этих частиц. Содержание холестерола и его эфиров в составе хиломикронов составляет ~ 5 %, в ЛПОНП ~10%, в ЛПНП ~ 50—60% и в ЛПВП ~ 20–30 %. Концентрация холестерола в сыворотке крови взрослого человека в норме равна ~ 200 мг/дл или 5,2 ммоль/л, что соответствует холестериновому равновесию, когда количество холестерола, поступающего в организм, равно количеству холестерола выводимому из организма. Если концентрация холестерола в крови выше нормы, то это указывает на задержку его в организме и является фактором риска развития атеросклероза.
Холестерол является предшественником всех стероидов животного организма:
Холестериновое равновесие поддерживается благодаря тому, что с одной стороны холестерол поступает с пищей (~ 0,3—0,5 г/с) и синтезируется в печени или других тканях (~ 0,5 г/с), а с другой — выводится с калом в виде жёлчных кислот, холестерола желчи, продуктов катаболизма стероидных гормонов, с кожным салом, в составе мембран слущенного эпителия (~ 1,0 г/с)
Биосинтез холестерола
Транспорт холестерола
Эйкозаноиды
Эйкозаноиды, включающие в себя простагландины, тромбоксаны, лейкотриены и ряд других веществ, — высокоактивные регуляторы клеточных функций. Они имеют очень короткий Т1/2, поэтому оказывают эффекты как «гормоны местного действия», влияя на метаболизм продуцирующей их клетки по аутокринному механизму, и на окружающие клетки — по паракринному механизму. Эйкозаноиды участвуют во многих процессах: регулируют тонус гладкомышечных клеток и вследствие этого влияют на АД, состояние бронхов, кишечника, матки. Эйкозаноиды регулируют секрецию воды и натрия почками, влияют на образование тромбов. Разные типы эйкозаноидов участвуют в развитии воспалительного процесса, происходящего после повреждения тканей или инфекции. Такие признаки воспаления, как боль, отёк, лихорадка, в значительной мере обусловлены действием эйкозаноидов. Избыточная секреция эйкозаноидов приводит к ряду заболеваний, например, бронхиальной астме и аллергическим реакциям.
Субстраты для синтеза эйкозаноидов
Основным субстратом для синтеза эйкозаноидов является арахидоновая (ω-6-эйкозатетраеновая) кислота, содержащая 4 двойные связи при углеродных атомах (5, 8, 11, 14). Она может поступать с пищей или синтезироваться из линолевой кислоты. В небольших количествах для синтеза эйкозаноидов могут использоваться ω-6-эйкозатриеновая кислота с тремя двойными связями (5, 8, 11) и ω-3-эйкозапентаеновая кислота, в составе которой имеется 5 двойных связей в положениях 5, 8, 11, 14, 17. Обе минорные эйкозановые кислоты либо поступают с пищей, либо синтезируются из олеиновый и линоленовой кислот соответственно.
Синтез лейкотриенов, ГЭТЕ(гидроксиэйкозатетроеноатов), липоксинов
Синтез лейкотриенов идёт по пути, отличному от пути синтеза простагландинов, и начинается с образования гидроксипероксидов — гидропероксидэйкозатетраеноатов (ГПЭТЕ). Эти вещества или восстанавливаются с образованием гидроксиэйкозатетроеноатов (ГЭТЕ) или превращаются в лейкотриены или липоксины. ГЭТЕ отличаются по положению гидроксильной группы у 5-го, 12-го или 15-го атома углерода, например: 5-ГЭТЕ, 12-ГЭТЕ.
Липоксины (например, основной липоксин А4) включают 4 сопряжённых двойных связи и 3 гидроксильных группы.
Синтез липоксинов начинается с действия на арахидоновую кислоту 15-липоксигеназы, затем происходит ряд реакций, приводящих к образованию липоксина А4
Клинические аспекты обмена эйкозаноидов
Медленно реагирующая субстанция при анафилаксии (МРВ-А) представляет собой смесь лейкотриенов С4, D4 и Е4. Эта смесь в 100—1000 раз более эффективна, чем гистамин или простагландины как фактор, вызывающий сокращение гладкой мускулатуры бронхов. Эти лейкотриены вместе с лейкотрином В4 повышают проницаемость кровеносных сосудов и вызывают приток и активацию лейкоцитов, а также, являются важными регуляторами при многих заболеваниях, в развитии которых участвуют воспалительные процессы или быстрые аллергические реакции (например, при бронхиальной астме).
Использование производных эйкозаноидов в качестве лекарственных средств
Хотя действие всех типов эйкозаноидов до конца не изучено, имеются примеры успешного использования лекарств — аналогов эйкозаноидов для лечения различных заболеваний. Например, аналоги PG Е1 и PG Е2 подавляют секрецию соляной кислоты в желудке, блокируя гистаминовые рецепторы II типа в клетках слизистой оболочки желудка. Эти лекарства, известные как Н2-блокаторы, ускоряют заживление язв желудка и двенадцатиперстной кишки. Способность PG Е2 и PG F2α стимулировать сокращение мускулатуры матки используют для стимуляции родовой деятельности.
Метаболизм сфинголипидов
Сфинголипиды — производные церамида, образующегося в результате соединения аминоспирта сфингозина и жирной кислоты. В группу сфинголипидов входят сфингомиелины и гликосфинголипиды.
Сфингомиелины находятся в мембранах клеток различных тканей, но наибольшее их количество содержится в нервной ткани. Сфингомиелины миелиновых оболочек содержат в основном жирные кислоты с длинной цепью: лигноцериновую и нервоновую кислоты, а сфингомиелин серого вещества мозга содержит преимущественно стеариновую кислоту.
Синтез церамида и его производных
Катаболизм сфингомиелина и его нарушения
В лизосомах находятся ферменты, способные гидролизовать любые компоненты клеток. Эти ферменты называют кислыми гидролазами, так как они активны в кислой среде.
Регуляция липидного обмена
В условиях положительного калорийного баланса значительная часть потенциальной энергии пищевых продуктов запасается в виде энергии гликогена или жира. Во многих тканях даже при нормальном питании, не говоря уже о состояниях калорийного дефицита или голодания, окисляются преимущественно жирные кислоты, а не глюкоза. Причина этого — необходимость сохранения глюкозы для тех тканей (например, для мозга или эритроцитов), которые постоянно в ней нуждаются. Следовательно, регуляторные механизмы, часто с участием гормонов, должны обеспечивать постоянное снабжение всех тканей подходящим топливом в условиях как нормального питания, так и голодания. Сбой в этих механизмах происходит при гормональном дисбалансе (например, в условиях недостатка инсулина при диабете), при нарушении метаболизма в период интенсивной лактации (например, при кетозе крупного рогатого скота) или из-за усиления обменных процессов при беременности (например, при токсикозе беременности у овец). Такие состояния представляют собой патологические отклонения при синдроме голодания; он наблюдается при многих заболеваниях, сопровождающихся снижением аппетита.
Патологии липидного обмена
Тучность
Абеталипопротеинемия
Это относительно редкое генетическое заболевание характеризуется отсутствием в плазме β-липопротеидов плотности, меньшей чем 1,063 и связано с интенсивной демиелинизацией нервных волокон. Апо-В отсутствует в плазме, так же как и в хиломикронах, ЛПОНП и ЛПНП. Уровень триацилглицеринов и холестерина плазмы очень низок. Это свидетельствует о необходимости апо-В для нормального всасывания, синтеза и транспорта триацилглицеринов и холестерина из кишечника и печени. Липиды накапливаются в клетках слизистой оболочки кишечных ворсинок, при этом наблюдается акантоцитоз — сферическая деформация эритроцитов. Более 80% эритроцитов являются акантоцитами, или, как их иначе называют, зубчатыми эритроцитами (от греч. akantha — зубец, шип).
Кахексия
Недостаточное потребление калорий может привести и к полному исчезновению жировой ткани из подкожного и сальникового депо. Это может происходить при опухолях или хроническом инфекционном заболевании, при недостаточном питании или при метаболических нарушениях, таких, как диабет или увеличение щитовидной железы. В экспериментах было показано, что повреждение определенных областей гипоталамуса вызывает анорексию даже у предварительно голодавшего животного. Для анорексии, в происхождении которой имеет значение психогенный компонент, используют термин «anorexia nervosa» (нейрогенная анорексия).
В то время как потеря липидов тела при болезни щитовидной железы связана частично с избыточной мобилизацией резервных липидов, существенной причиной кахексии при голодании, недостаточности тиамина или диабете является сниженная способность организма синтезировать жирные кислоты из углеводных предшественников.
Атеросклероз
Атеросклероз (от греч. ἀθέρος — мякина, кашица + σκληρός — твёрдый, плотный) — хроническое заболевание артерий эластического и мышечно-эластического типа, возникающее вследствие нарушения липидного обмена и сопровождающееся отложением холестерина и некоторых фракций липопротеидов в интиме сосудов. Отложения формируются в виде атероматозных бляшек. Последующее разрастание в них соединительной ткани (склероз), и кальциноз стенки сосуда приводят к деформации и сужению просвета вплоть до облитерации (закупорки). Важно различать атеросклероз от артериосклероза Менкеберга, другой формы склеротических поражений артерий, для которой характерно отложение солей кальция в средней оболочке артерий, диффузность поражения (отсутствие бляшек), развитие аневризм (а не закупорки) сосудов. Атеросклероз сосудов ведет к развитию ишемической болезни сердца.
Молекулярные механизмы патогенеза атеросклероза
Источники
Таганович и др. Биологическая химия. — Минск: Высшая школа, 2013. — ISBN 978-985-06-2321-8.
См. также
Липидный обмен — Википедия
Липидный обмен — или метаболизм липидов, представляет собой сложный биохимический и физиологический процесс, происходящий в некоторых клетках живых организмов.
Липидный обмен включает в себя следующие процессы:
Общие сведения о липидах
Термин «липиды» объединяет вещества, обладающие общим физическим свойством — гидрофобностью, то есть нерастворимостью в воде. Однако такое определение в настоящее время является не совсем корректным ввиду, того, что некоторые группы (триацилглицерины, фосфолипиды, сфинголипиды и др.) проявляют себя как амфифильные или дифильные соединения, т.е. способные растворяться как в полярных веществах (гидрофильность), так и в неполярных (гидрофобность). По структуре липиды настолько разнообразны, что у них отсутствует общий признак химического строения. Липиды разделяют на классы, в которые объединяют молекулы, имеющие сходное химическое строение и общие биологические свойства.
Основную массу липидов в организме составляют жиры — триацилглицеролы, служащие формой депонирования энергии. Жиры располагаются преимущественно в подкожной жировой ткани и выполняют также функции теплоизоляционной и механической защиты.
Фосфолипиды — большой класс липидов, получивший своё название из-за остатка фосфорной кислоты, придающего им свойства амфифильности. Благодаря этому свойству фосфолипиды формируют бислойную структуру мембран, в которую погружены белки. Клетки или отделы клеток, окружённые мембранами, отличаются по составу и набору молекул от окружающей среды, поэтому химические процессы в клетке разделены и ориентированы в пространстве, что необходимо для регуляции метаболизма.
Стероиды, представленные в животном мире холестеролом и его производными, выполняют разнообразные функции. Холестерол — важный компонент мембран и регулятор свойств гидрофобного слоя. Производные холестерола (жёлчные кислоты) необходимы для переваривания жиров. Стероидные гормоны, синтезируемые из холестерола, участвуют в регуляции энергетического, водно-солевого обменов, половых функций. Кроме стероидных гормонов, многие производные липидов выполняют регуляторные функции и действуют, как и гормоны, в очень низких концентрациях. Например, тромбоцитактивирующий фактор — фосфолипид особой структуры — оказывает сильное влияние на агрегацию тромбоцитов в концентрации 10-12 М; эйкозаноиды, производные полиеновых жирных кислот, вырабатываемые почти всеми типами клеток, вызывают разнообразные биологические эффекты в концентрациях не более 10-9 М. Из приведённых примеров следует, что липиды обладают широким спектром биологических функций.
В тканях человека количество разных классов липидов существенно различается. В жировой ткани жиры составляют до 75 % сухого веса. В нервной ткани липидов содержится до 50 % сухого веса, основные из них фосфолипиды и сфингомиелины (30 %), холестерол (10 %), ганглиозиды и цереброзиды (7 %). В печени общее количество липидов в норме не превышает 10-13 %.
Нарушения обмена липидов приводят к развитию многих заболеваний, но среди людей наиболее распространены два из них — ожирение и атеросклероз.
Расщепление, переваривание и всасывание пищевых липидов
Суточная потребность человека в жирах составляет 70-80 г, хотя в пищевом рационе их содержание может колебаться от 80 до 130 г.
Переваривание липидов в желудке
В желудке имеется фермент липаза, способный катализировать расщепление триацилглицеролов. Однако оптимальной средой ее действия является среда, близкая к нейтральной. Поэтому липаза в желудке у взрослых людей практически неактивна из-за малых значений pH.
Переваривание липидов в кишечнике
В двенадцатиперстной кишке пища подвергается действию желчи и сока поджелудочной железы. На первом этапе там происходит эмульгирование жиров
Эмульгирование жиров
Жиры составляют до 90 % липидов, поступающих с пищей. Переваривание жиров происходит в тонком кишечнике, однако уже в желудке небольшая часть жиров гидролизуется под действием «липазы языка». Этот фермент синтезируется железами на дорсальной поверхности языка и относительно устойчив при кислых значениях рН желудочного сока. Поэтому он действует в течение 1-2 ч на жиры пищи в желудке. Однако вклад этой липазы в переваривание жиров у взрослых людей незначителен. Основной процесс переваривания происходит в тонкой кишке.
Так как жиры — нерастворимые в воде соединения, то они могут подвергаться действию ферментов, растворённых в воде только на границе раздела фаз вода/жир. Поэтому действию панкреатической липазы, гидролизующей жиры, предшествует эмульгирование жиров. Эмульгирование (смешивание жира с водой) происходит в тонком кишечнике под действием солей жёлчных кислот. Жёлчные кислоты представляют собой в основном конъюгированные жёлчные кислоты: таурохолевую, гликохолевую и другие кислоты.
Гормоны, активирующие переваривание жиров
При поступлении пищи в желудок, а затем в кишечник клетки слизистой оболочки тонкого кишечника начинают секретировать в кровь пептидный гормон холецистокинин (панкреозимин). Этот гормон действует на жёлчный пузырь, стимулируя его сокращение, и на экзокринные клетки поджелудочной железы, стимулируя секрецию пищеварительных ферментов, в том числе панкреатической липазы. Другие клетки слизистой оболочки тонкого кишечника в ответ на поступление из желудка кислого содержимого выделяют гормон секретин. Секретин — гормон пептидной природы, стимулирующий секрецию гидрокарбоната (НСО3—) в сок поджелудочной железы.
Нарушения переваривания и всасывания жиров
Нарушение переваривания жиров может быть следствием нескольких причин. Одна из них — нарушение секреции жёлчи из жёлчного пузыря при механическом препятствии оттоку жёлчи. Это состояние может быть результатом сужения просвета жёлчного протока камнями, образующимися в жёлчном пузыре, или сдавлением жёлчного протока опухолью, развивающейся в окружающих тканях. Уменьшение секреции жёлчи приводит к нарушению эмульгирования пищевых жиров и, следовательно, к снижению способности панкреатической липазы гидролизовать жиры.
Нарушение секреции сока поджелудочной железы и, следовательно, недостаточная секреция панкреатической липазы также приводят к снижению скорости гидролиза жиров. В обоих случаях нарушение переваривания и всасывания жиров приводит к увеличению количества жиров в фекалиях — возникает стеаторея (жирный стул). В норме содержание жиров в фекалиях составляет не более 5%. При стеаторее нарушается всасывание жирорастворимых витаминов (A, D, E, К) и незаменимых жирных кислот, поэтому при длительно текущей стеаторее развивается недостаточность этих незаменимых факторов питания с соответствующими клиническими симптомами. При нарушении переваривания жиров плохо перевариваются и вещества нелипидной природы, так как жир обволакивает частицы пищи и препятствует действию на них ферментов.
Всасывание липидов в кишечнике
Ресинтез жиров в слизистой оболочке тонкого кишечника
Основная часть всосавшихся в тонком кишечнике липидов принимает участие в ресинтезе триацилглицеринов. Для этого в эндоплазматическом ретикулуме энтероцитов работают специальные ферменты
Факторы, влияющие на всасывание липидов
Катаболизм липидов
Катаболизм липидов — совокупность всех катаболических процессов липидов, включающая несколько стадий:
Липолиз
Липолиз — катаболический процесс, результатом которого является расщепление жиров, происходящее под действием фермента липазы.
Окисление жирных кислот
β-Окисление жирных кислот
Процесс β-окисления высших жирных кислот (ВЖК) складывается из следующих этапов:
- активация ВЖК на наружной поверхности мембраны митохондрий при участии АТФ, кофермента А и ионов магния с образованием активной формы ВЖК (ацил — КоА).
- транспорт жирных кислот внутрь митохондрий возможен при присоединении активной формы жирной кислоты к карнитину, находящемуся на наружной поверхности внутренней мембраны митохондрий. Образуется ацил-карнитин, обладающий способностью проходить через мембрану. На внутренней поверхности комплекс распадается и карнитин возвращается на наружную поверхность мембраны.
- внутримитохондриальное окисление жирных кислот состоит из последовательных ферментативных реакций. В результате одного завершенного цикла окисления происходит отщепление от жирной кислоты одной молекулы ацетил-КоА, т.е. укорочение жирнокислотной цепи на два углеродных атома. При этом в результате двух дегидрогеназных реакций восстанавливается ФАД до ФАДН2 и НАД+ до НАДН2. Таким образом завершая 1 цикл β—окисления ВЖК, в результате которого ВЖК укоротилось на 2 углеродных звена. При β-окислении выделилось 5АТФ и 12АТФ выделилось при окислении ацетил-КоА в цикле Кребса и сопряженных с ним ферментов дыхательной цепи. Окисление ВЖК будет происходить циклически одинаково, но только до последней стадии — стадии превращения масляной кислоты (бутирил-КоА), которая имеет свои особенности, которые необходимо учитывать при подсчёте суммарного энергетического эффекта окисления ВЖК, когда в результате одного цикла образуется 2 молекулы ацетил-КоА, одна из них проходила β-окисление с выделением 5АТФ, а другая нет.
ω-Окисление жирных кислот
Хотя для жирных кислот наиболее характерно β-окисление, встречаются также два других типа окисления: α-и ω-окисления. Окисление жирных кислот с длинной цепью до 2-оксикислот и затем до жирных кислот с числом атомов углерода на один меньше, чем в исходном субстрате, было показано в микросомах мозга и других тканей, а также в растениях. 2-Оксикислоты с длинной цепью являются компонентами липидов мозга.
Окисление ненасыщенных жирных кислот
Около половины жирных кислот в организме человека ненасыщенные. β-Окисление этих кислот идёт обычным путём до тех пор, пока двойная связь не окажется между третьим и четвёртым атомами углерода. Затем фермент еноил-КоА изомераза перемещает двойную связь из положения 3-4 в положение 2-3 и изменяет цис-конформацию двойной связи на транс-, которая требуется для β-окисления. В этом цикле β-окисления первая реакция дегидрирования не происходит, так как двойная связь в радикале жирной кислоты уже имеется. Далее циклы β-окисления продолжаются, не отличаясь от обычного пути.
Нарушения окисления жирных кислот
Нарушение переноса жирных кислот в митохондрии.
Скорость переноса жирных кислот внутрь митохондрий, а следовательно и скорость процесса β-окисления, зависит от доступности карнитина и скорости работы фермента карнитинацилтрансферазы I.
β-Окисление могут нарушать следующие факторы:
- длительный гемодиализ, в ходе которого организм теряет карнитин;
- длительная ацидурия, при которой карнитин выводится как основание с органическими кислотами;
- лечение больных сахарным диабетом препаратами сульфонилмочевины, ингибирующими карнитинацилтрансферазу I;
- низкая активность ферментов, синтезирующих карнитин;
- наследственные дефекты карнитинацил-трансферазы I.
Окисление кетоновых тел
При длительном голодании кетоновые тела становятся основным источником энергии для скелетных мышц, сердца и почек. Таким образом глюкоза сохраняется для окисления в мозге и эритроцитах. Уже через 2-3 дня после начала голодания концентрация кетоновых тел в крови достаточна для того, чтобы они проходили в клетки мозга и окислялись, снижая его потребности в глюкозе.
Перекисное окисление липидов
Кислород, необходимый организму для функционирования ЦПЭ и многих других реакций, является одновременно и токсическим веществом, если из него образуются так называемые активные формы.
К активным формам кислорода относят:
Анаболизм липидов
Липогенез
Липогенез — процесс синтеза жирных кислот, основным источником которого является углеводы.
С пищей в организм поступают разнообразные жирные кислоты, в том числе и незаменимые. Значительная часть заменимых жирных кислот синтезируется в печени, в меньшей степени — в жировой ткани и лактирующей молочной железе. Источником углерода для синтеза жирных кислот служит ацетил-КоА, образующийся при распаде глюкозы в абсорбтивном периоде. Таким образом, избыток углеводов, поступающих в организм, трансформируется в жирные кислоты, а затем в жиры.
Синтез кетоновых тел
Все кетоновые тела берут начало от ацетоацетил-КоА, который образуется при конденсации 2-х молекул ацетил-КоА по принципу «голова в хвост». Реакция когденсации происходит в митохондриях. В печени ацетоацетил-КоА взаимодействует еще с одной молекулой ацетил-КоА и превращается в ГОМГ-КоА- важное промежуточное вещество для синтеза холестерола и стероидов.
Взаимопревращения жирных кислот
Организм получает жирные кислоты из пищи и путём липогенеза из ацетил-КоА, образующегося из углеводов и некоторых аминокислот. Состав смеси жирных кислот пищи существенно варьирует по степени ненасыщенности и длине цепи. Липогенез у высших животных включает только образование пальмитата, из которого образуются другие насыщенные и мононенасыщенные кислоты. Из смеси имеющихся жирных кислот в печени животного образуется свойственный данному виду набор жирных кислот; однако на характере синтезируемых жирных кислот сказывается также и диета. Процессы утилизации жирных кислот пищи включают укорочение и удлинение углеродного скелета, так же как и введение двойной связи.
Обмен фосфолипидов
Фосфолипиды выполняют ряд важных биологических функций. Как большинство полярных липидов, они являются амфифильными соединениями, несущими гидрофобные и гидрофильные группы. Некоторые фосфолипиды, например фосфатидилхолин, представляют собой диполярные ионы, обладающие катионной и анионной группами, и являются основными компонентами клеточных мембранных систем. Например, в миелиновом волокне нерва фосфолипиды и цереброзиды составляют приблизительно 60% сухого веса.
Распределение и обмен
Среди липидов тела фосфолипиды распределены неравномерно. Богатыми источниками фосфолипидов являются липиды тканей различных желез, в особенности печени, а также плазма крови, где они могут составлять до половины всех липидов. Фосфолипиды являются также преобладающими липидами в желтках птичьих яиц и в семенах бобовых растений. Обмен различных фосфолипидов в определенных местах животного организма изучали с использованием различных изотопов, наиболее часто 32Р. Период полупревращения этих липидов колеблется от менее одного дня для фосфатидилхолина печени до более 200 сут для фосфатидилэтаноламина мозга.
Образование
Обмен холестерола
Холестерол — основной стероид организма животных. У взрослого человека содержание холестерола составляет 140–150 г. Около 93% стероида входит в состав мембран и 7% находится в жидкостях организма. Холестерол увеличивает микровязкость мембран и снижает их проницаемость для Н2О и водорастворимых веществ. В крови он представлен в виде свободного холестерола, входящего в оболочку липопротеинов, и его эфиров, которые вместе с ТАГ составляют внутреннее содержимое этих частиц. Содержание холестерола и его эфиров в составе хиломикронов составляет ~ 5 %, в ЛПОНП ~10%, в ЛПНП ~ 50—60% и в ЛПВП ~ 20–30 %. Концентрация холестерола в сыворотке крови взрослого человека в норме равна ~ 200 мг/дл или 5,2 ммоль/л, что соответствует холестериновому равновесию, когда количество холестерола, поступающего в организм, равно количеству холестерола выводимому из организма. Если концентрация холестерола в крови выше нормы, то это указывает на задержку его в организме и является фактором риска развития атеросклероза.
Холестерол является предшественником всех стероидов животного организма:
Холестериновое равновесие поддерживается благодаря тому, что с одной стороны холестерол поступает с пищей (~ 0,3—0,5 г/с) и синтезируется в печени или других тканях (~ 0,5 г/с), а с другой — выводится с калом в виде жёлчных кислот, холестерола желчи, продуктов катаболизма стероидных гормонов, с кожным салом, в составе мембран слущенного эпителия (~ 1,0 г/с)
Биосинтез холестерола
Транспорт холестерола
Эйкозаноиды
Эйкозаноиды, включающие в себя простагландины, тромбоксаны, лейкотриены и ряд других веществ, — высокоактивные регуляторы клеточных функций. Они имеют очень короткий Т1/2, поэтому оказывают эффекты как «гормоны местного действия», влияя на метаболизм продуцирующей их клетки по аутокринному механизму, и на окружающие клетки — по паракринному механизму. Эйкозаноиды участвуют во многих процессах: регулируют тонус гладкомышечных клеток и вследствие этого влияют на АД, состояние бронхов, кишечника, матки. Эйкозаноиды регулируют секрецию воды и натрия почками, влияют на образование тромбов. Разные типы эйкозаноидов участвуют в развитии воспалительного процесса, происходящего после повреждения тканей или инфекции. Такие признаки воспаления, как боль, отёк, лихорадка, в значительной мере обусловлены действием эйкозаноидов. Избыточная секреция эйкозаноидов приводит к ряду заболеваний, например, бронхиальной астме и аллергическим реакциям.
Субстраты для синтеза эйкозаноидов
Основным субстратом для синтеза эйкозаноидов является арахидоновая (ω-6-эйкозатетраеновая) кислота, содержащая 4 двойные связи при углеродных атомах (5, 8, 11, 14). Она может поступать с пищей или синтезироваться из линолевой кислоты. В небольших количествах для синтеза эйкозаноидов могут использоваться ω-6-эйкозатриеновая кислота с тремя двойными связями (5, 8, 11) и ω-3-эйкозапентаеновая кислота, в составе которой имеется 5 двойных связей в положениях 5, 8, 11, 14, 17. Обе минорные эйкозановые кислоты либо поступают с пищей, либо синтезируются из олеиновый и линоленовой кислот соответственно.
Синтез лейкотриенов, ГЭТЕ(гидроксиэйкозатетроеноатов), липоксинов
Синтез лейкотриенов идёт по пути, отличному от пути синтеза простагландинов, и начинается с образования гидроксипероксидов — гидропероксидэйкозатетраеноатов (ГПЭТЕ). Эти вещества или восстанавливаются с образованием гидроксиэйкозатетроеноатов (ГЭТЕ) или превращаются в лейкотриены или липоксины. ГЭТЕ отличаются по положению гидроксильной группы у 5-го, 12-го или 15-го атома углерода, например: 5-ГЭТЕ, 12-ГЭТЕ.
Липоксины (например, основной липоксин А4) включают 4 сопряжённых двойных связи и 3 гидроксильных группы.
Синтез липоксинов начинается с действия на арахидоновую кислоту 15-липоксигеназы, затем происходит ряд реакций, приводящих к образованию липоксина А4
Клинические аспекты обмена эйкозаноидов
Медленно реагирующая субстанция при анафилаксии (МРВ-А) представляет собой смесь лейкотриенов С4, D4 и Е4. Эта смесь в 100—1000 раз более эффективна, чем гистамин или простагландины как фактор, вызывающий сокращение гладкой мускулатуры бронхов. Эти лейкотриены вместе с лейкотрином В4 повышают проницаемость кровеносных сосудов и вызывают приток и активацию лейкоцитов, а также, являются важными регуляторами при многих заболеваниях, в развитии которых участвуют воспалительные процессы или быстрые аллергические реакции (например, при бронхиальной астме).
Использование производных эйкозаноидов в качестве лекарственных средств
Хотя действие всех типов эйкозаноидов до конца не изучено, имеются примеры успешного использования лекарств — аналогов эйкозаноидов для лечения различных заболеваний. Например, аналоги PG Е1 и PG Е2 подавляют секрецию соляной кислоты в желудке, блокируя гистаминовые рецепторы II типа в клетках слизистой оболочки желудка. Эти лекарства, известные как Н2-блокаторы, ускоряют заживление язв желудка и двенадцатиперстной кишки. Способность PG Е2 и PG F2α стимулировать сокращение мускулатуры матки используют для стимуляции родовой деятельности.
Метаболизм сфинголипидов
Сфинголипиды — производные церамида, образующегося в результате соединения аминоспирта сфингозина и жирной кислоты. В группу сфинголипидов входят сфингомиелины и гликосфинголипиды.
Сфингомиелины находятся в мембранах клеток различных тканей, но наибольшее их количество содержится в нервной ткани. Сфингомиелины миелиновых оболочек содержат в основном жирные кислоты с длинной цепью: лигноцериновую и нервоновую кислоты, а сфингомиелин серого вещества мозга содержит преимущественно стеариновую кислоту.
Синтез церамида и его производных
Катаболизм сфингомиелина и его нарушения
В лизосомах находятся ферменты, способные гидролизовать любые компоненты клеток. Эти ферменты называют кислыми гидролазами, так как они активны в кислой среде.
Регуляция липидного обмена
В условиях положительного калорийного баланса значительная часть потенциальной энергии пищевых продуктов запасается в виде энергии гликогена или жира. Во многих тканях даже при нормальном питании, не говоря уже о состояниях калорийного дефицита или голодания, окисляются преимущественно жирные кислоты, а не глюкоза. Причина этого — необходимость сохранения глюкозы для тех тканей (например, для мозга или эритроцитов), которые постоянно в ней нуждаются. Следовательно, регуляторные механизмы, часто с участием гормонов, должны обеспечивать постоянное снабжение всех тканей подходящим топливом в условиях как нормального питания, так и голодания. Сбой в этих механизмах происходит при гормональном дисбалансе (например, в условиях недостатка инсулина при диабете), при нарушении метаболизма в период интенсивной лактации (например, при кетозе крупного рогатого скота) или из-за усиления обменных процессов при беременности (например, при токсикозе беременности у овец). Такие состояния представляют собой патологические отклонения при синдроме голодания; он наблюдается при многих заболеваниях, сопровождающихся снижением аппетита.
Патологии липидного обмена
Тучность
Абеталипопротеинемия
Это относительно редкое генетическое заболевание характеризуется отсутствием в плазме β-липопротеидов плотности, меньшей чем 1,063 и связано с интенсивной демиелинизацией нервных волокон. Апо-В отсутствует в плазме, так же как и в хиломикронах, ЛПОНП и ЛПНП. Уровень триацилглицеринов и холестерина плазмы очень низок. Это свидетельствует о необходимости апо-В для нормального всасывания, синтеза и транспорта триацилглицеринов и холестерина из кишечника и печени. Липиды накапливаются в клетках слизистой оболочки кишечных ворсинок, при этом наблюдается акантоцитоз — сферическая деформация эритроцитов. Более 80% эритроцитов являются акантоцитами, или, как их иначе называют, зубчатыми эритроцитами (от греч. akantha — зубец, шип).
Кахексия
Недостаточное потребление калорий может привести и к полному исчезновению жировой ткани из подкожного и сальникового депо. Это может происходить при опухолях или хроническом инфекционном заболевании, при недостаточном питании или при метаболических нарушениях, таких, как диабет или увеличение щитовидной железы. В экспериментах было показано, что повреждение определенных областей гипоталамуса вызывает анорексию даже у предварительно голодавшего животного. Для анорексии, в происхождении которой имеет значение психогенный компонент, используют термин «anorexia nervosa» (нейрогенная анорексия).
В то время как потеря липидов тела при болезни щитовидной железы связана частично с избыточной мобилизацией резервных липидов, существенной причиной кахексии при голодании, недостаточности тиамина или диабете является сниженная способность организма синтезировать жирные кислоты из углеводных предшественников.
Атеросклероз
Атеросклероз (от греч. ἀθέρος — мякина, кашица + σκληρός — твёрдый, плотный) — хроническое заболевание артерий эластического и мышечно-эластического типа, возникающее вследствие нарушения липидного обмена и сопровождающееся отложением холестерина и некоторых фракций липопротеидов в интиме сосудов. Отложения формируются в виде атероматозных бляшек. Последующее разрастание в них соединительной ткани (склероз), и кальциноз стенки сосуда приводят к деформации и сужению просвета вплоть до облитерации (закупорки). Важно различать атеросклероз от артериосклероза Менкеберга, другой формы склеротических поражений артерий, для которой характерно отложение солей кальция в средней оболочке артерий, диффузность поражения (отсутствие бляшек), развитие аневризм (а не закупорки) сосудов. Атеросклероз сосудов ведет к развитию ишемической болезни сердца.
Молекулярные механизмы патогенеза атеросклероза
Источники
Таганович и др. Биологическая химия. — Минск: Высшая школа, 2013. — ISBN 978-985-06-2321-8.
См. также
Липидный обмен — Википедия. Что такое Липидный обмен
Липидный обмен — или метаболизм липидов, представляет собой сложный биохимический и физиологический процесс, происходящий в некоторых клетках живых организмов.
Липидный обмен включает в себя следующие процессы:
Общие сведения о липидах
Термин «липиды» объединяет вещества, обладающие общим физическим свойством — гидрофобностью, то есть нерастворимостью в воде. Однако такое определение в настоящее время является не совсем корректным ввиду, того, что некоторые группы (триацилглицерины, фосфолипиды, сфинголипиды и др.) проявляют себя как амфифильные или дифильные соединения, т.е. способные растворяться как в полярных веществах (гидрофильность), так и в неполярных (гидрофобность). По структуре липиды настолько разнообразны, что у них отсутствует общий признак химического строения. Липиды разделяют на классы, в которые объединяют молекулы, имеющие сходное химическое строение и общие биологические свойства.
Основную массу липидов в организме составляют жиры — триацилглицеролы, служащие формой депонирования энергии. Жиры располагаются преимущественно в подкожной жировой ткани и выполняют также функции теплоизоляционной и механической защиты.
Фосфолипиды — большой класс липидов, получивший своё название из-за остатка фосфорной кислоты, придающего им свойства амфифильности. Благодаря этому свойству фосфолипиды формируют бислойную структуру мембран, в которую погружены белки. Клетки или отделы клеток, окружённые мембранами, отличаются по составу и набору молекул от окружающей среды, поэтому химические процессы в клетке разделены и ориентированы в пространстве, что необходимо для регуляции метаболизма.
Стероиды, представленные в животном мире холестеролом и его производными, выполняют разнообразные функции. Холестерол — важный компонент мембран и регулятор свойств гидрофобного слоя. Производные холестерола (жёлчные кислоты) необходимы для переваривания жиров. Стероидные гормоны, синтезируемые из холестерола, участвуют в регуляции энергетического, водно-солевого обменов, половых функций. Кроме стероидных гормонов, многие производные липидов выполняют регуляторные функции и действуют, как и гормоны, в очень низких концентрациях. Например, тромбоцитактивирующий фактор — фосфолипид особой структуры — оказывает сильное влияние на агрегацию тромбоцитов в концентрации 10-12 М; эйкозаноиды, производные полиеновых жирных кислот, вырабатываемые почти всеми типами клеток, вызывают разнообразные биологические эффекты в концентрациях не более 10-9 М. Из приведённых примеров следует, что липиды обладают широким спектром биологических функций.
В тканях человека количество разных классов липидов существенно различается. В жировой ткани жиры составляют до 75 % сухого веса. В нервной ткани липидов содержится до 50 % сухого веса, основные из них фосфолипиды и сфингомиелины (30 %), холестерол (10 %), ганглиозиды и цереброзиды (7 %). В печени общее количество липидов в норме не превышает 10-13 %.
Нарушения обмена липидов приводят к развитию многих заболеваний, но среди людей наиболее распространены два из них — ожирение и атеросклероз.
Расщепление, переваривание и всасывание пищевых липидов
Суточная потребность человека в жирах составляет 70-80 г, хотя в пищевом рационе их содержание может колебаться от 80 до 130 г.
Переваривание липидов в желудке
В желудке имеется фермент липаза, способный катализировать расщепление триацилглицеролов. Однако оптимальной средой ее действия является среда, близкая к нейтральной. Поэтому липаза в желудке у взрослых людей практически неактивна из-за малых значений pH.
Переваривание липидов в кишечнике
В двенадцатиперстной кишке пища подвергается действию желчи и сока поджелудочной железы. На первом этапе там происходит эмульгирование жиров
Эмульгирование жиров
Жиры составляют до 90 % липидов, поступающих с пищей. Переваривание жиров происходит в тонком кишечнике, однако уже в желудке небольшая часть жиров гидролизуется под действием «липазы языка». Этот фермент синтезируется железами на дорсальной поверхности языка и относительно устойчив при кислых значениях рН желудочного сока. Поэтому он действует в течение 1-2 ч на жиры пищи в желудке. Однако вклад этой липазы в переваривание жиров у взрослых людей незначителен. Основной процесс переваривания происходит в тонкой кишке.
Так как жиры — нерастворимые в воде соединения, то они могут подвергаться действию ферментов, растворённых в воде только на границе раздела фаз вода/жир. Поэтому действию панкреатической липазы, гидролизующей жиры, предшествует эмульгирование жиров. Эмульгирование (смешивание жира с водой) происходит в тонком кишечнике под действием солей жёлчных кислот. Жёлчные кислоты представляют собой в основном конъюгированные жёлчные кислоты: таурохолевую, гликохолевую и другие кислоты.
Гормоны, активирующие переваривание жиров
При поступлении пищи в желудок, а затем в кишечник клетки слизистой оболочки тонкого кишечника начинают секретировать в кровь пептидный гормон холецистокинин (панкреозимин). Этот гормон действует на жёлчный пузырь, стимулируя его сокращение, и на экзокринные клетки поджелудочной железы, стимулируя секрецию пищеварительных ферментов, в том числе панкреатической липазы. Другие клетки слизистой оболочки тонкого кишечника в ответ на поступление из желудка кислого содержимого выделяют гормон секретин. Секретин — гормон пептидной природы, стимулирующий секрецию гидрокарбоната (НСО3—) в сок поджелудочной железы.
Нарушения переваривания и всасывания жиров
Нарушение переваривания жиров может быть следствием нескольких причин. Одна из них — нарушение секреции жёлчи из жёлчного пузыря при механическом препятствии оттоку жёлчи. Это состояние может быть результатом сужения просвета жёлчного протока камнями, образующимися в жёлчном пузыре, или сдавлением жёлчного протока опухолью, развивающейся в окружающих тканях. Уменьшение секреции жёлчи приводит к нарушению эмульгирования пищевых жиров и, следовательно, к снижению способности панкреатической липазы гидролизовать жиры.
Нарушение секреции сока поджелудочной железы и, следовательно, недостаточная секреция панкреатической липазы также приводят к снижению скорости гидролиза жиров. В обоих случаях нарушение переваривания и всасывания жиров приводит к увеличению количества жиров в фекалиях — возникает стеаторея (жирный стул). В норме содержание жиров в фекалиях составляет не более 5%. При стеаторее нарушается всасывание жирорастворимых витаминов (A, D, E, К) и незаменимых жирных кислот, поэтому при длительно текущей стеаторее развивается недостаточность этих незаменимых факторов питания с соответствующими клиническими симптомами. При нарушении переваривания жиров плохо перевариваются и вещества нелипидной природы, так как жир обволакивает частицы пищи и препятствует действию на них ферментов.
Всасывание липидов в кишечнике
Ресинтез жиров в слизистой оболочке тонкого кишечника
Основная часть всосавшихся в тонком кишечнике липидов принимает участие в ресинтезе триацилглицеринов. Для этого в эндоплазматическом ретикулуме энтероцитов работают специальные ферменты
Факторы, влияющие на всасывание липидов
Катаболизм липидов
Катаболизм липидов — совокупность всех катаболических процессов липидов, включающая несколько стадий:
Липолиз
Липолиз — катаболический процесс, результатом которого является расщепление жиров, происходящее под действием фермента липазы.
Окисление жирных кислот
β-Окисление жирных кислот
Процесс β-окисления высших жирных кислот (ВЖК) складывается из следующих этапов:
- активация ВЖК на наружной поверхности мембраны митохондрий при участии АТФ, кофермента А и ионов магния с образованием активной формы ВЖК (ацил — КоА).
- транспорт жирных кислот внутрь митохондрий возможен при присоединении активной формы жирной кислоты к карнитину, находящемуся на наружной поверхности внутренней мембраны митохондрий. Образуется ацил-карнитин, обладающий способностью проходить через мембрану. На внутренней поверхности комплекс распадается и карнитин возвращается на наружную поверхность мембраны.
- внутримитохондриальное окисление жирных кислот состоит из последовательных ферментативных реакций. В результате одного завершенного цикла окисления происходит отщепление от жирной кислоты одной молекулы ацетил-КоА, т.е. укорочение жирнокислотной цепи на два углеродных атома. При этом в результате двух дегидрогеназных реакций восстанавливается ФАД до ФАДН2 и НАД+ до НАДН2. Таким образом завершая 1 цикл β—окисления ВЖК, в результате которого ВЖК укоротилось на 2 углеродных звена. При β-окислении выделилось 5АТФ и 12АТФ выделилось при окислении ацетил-КоА в цикле Кребса и сопряженных с ним ферментов дыхательной цепи. Окисление ВЖК будет происходить циклически одинаково, но только до последней стадии — стадии превращения масляной кислоты (бутирил-КоА), которая имеет свои особенности, которые необходимо учитывать при подсчёте суммарного энергетического эффекта окисления ВЖК, когда в результате одного цикла образуется 2 молекулы ацетил-КоА, одна из них проходила β-окисление с выделением 5АТФ, а другая нет.
ω-Окисление жирных кислот
Хотя для жирных кислот наиболее характерно β-окисление, встречаются также два других типа окисления: α-и ω-окисления. Окисление жирных кислот с длинной цепью до 2-оксикислот и затем до жирных кислот с числом атомов углерода на один меньше, чем в исходном субстрате, было показано в микросомах мозга и других тканей, а также в растениях. 2-Оксикислоты с длинной цепью являются компонентами липидов мозга.
Окисление ненасыщенных жирных кислот
Около половины жирных кислот в организме человека ненасыщенные. β-Окисление этих кислот идёт обычным путём до тех пор, пока двойная связь не окажется между третьим и четвёртым атомами углерода. Затем фермент еноил-КоА изомераза перемещает двойную связь из положения 3-4 в положение 2-3 и изменяет цис-конформацию двойной связи на транс-, которая требуется для β-окисления. В этом цикле β-окисления первая реакция дегидрирования не происходит, так как двойная связь в радикале жирной кислоты уже имеется. Далее циклы β-окисления продолжаются, не отличаясь от обычного пути.
Нарушения окисления жирных кислот
Нарушение переноса жирных кислот в митохондрии.
Скорость переноса жирных кислот внутрь митохондрий, а следовательно и скорость процесса β-окисления, зависит от доступности карнитина и скорости работы фермента карнитинацилтрансферазы I.
β-Окисление могут нарушать следующие факторы:
- длительный гемодиализ, в ходе которого организм теряет карнитин;
- длительная ацидурия, при которой карнитин выводится как основание с органическими кислотами;
- лечение больных сахарным диабетом препаратами сульфонилмочевины, ингибирующими карнитинацилтрансферазу I;
- низкая активность ферментов, синтезирующих карнитин;
- наследственные дефекты карнитинацил-трансферазы I.
Окисление кетоновых тел
При длительном голодании кетоновые тела становятся основным источником энергии для скелетных мышц, сердца и почек. Таким образом глюкоза сохраняется для окисления в мозге и эритроцитах. Уже через 2-3 дня после начала голодания концентрация кетоновых тел в крови достаточна для того, чтобы они проходили в клетки мозга и окислялись, снижая его потребности в глюкозе.
Перекисное окисление липидов
Кислород, необходимый организму для функционирования ЦПЭ и многих других реакций, является одновременно и токсическим веществом, если из него образуются так называемые активные формы.
К активным формам кислорода относят:
Анаболизм липидов
Липогенез
Липогенез — процесс синтеза жирных кислот, основным источником которого является углеводы.
С пищей в организм поступают разнообразные жирные кислоты, в том числе и незаменимые. Значительная часть заменимых жирных кислот синтезируется в печени, в меньшей степени — в жировой ткани и лактирующей молочной железе. Источником углерода для синтеза жирных кислот служит ацетил-КоА, образующийся при распаде глюкозы в абсорбтивном периоде. Таким образом, избыток углеводов, поступающих в организм, трансформируется в жирные кислоты, а затем в жиры.
Синтез кетоновых тел
Все кетоновые тела берут начало от ацетоацетил-КоА, который образуется при конденсации 2-х молекул ацетил-КоА по принципу «голова в хвост». Реакция когденсации происходит в митохондриях. В печени ацетоацетил-КоА взаимодействует еще с одной молекулой ацетил-КоА и превращается в ГОМГ-КоА- важное промежуточное вещество для синтеза холестерола и стероидов.
Взаимопревращения жирных кислот
Организм получает жирные кислоты из пищи и путём липогенеза из ацетил-КоА, образующегося из углеводов и некоторых аминокислот. Состав смеси жирных кислот пищи существенно варьирует по степени ненасыщенности и длине цепи. Липогенез у высших животных включает только образование пальмитата, из которого образуются другие насыщенные и мононенасыщенные кислоты. Из смеси имеющихся жирных кислот в печени животного образуется свойственный данному виду набор жирных кислот; однако на характере синтезируемых жирных кислот сказывается также и диета. Процессы утилизации жирных кислот пищи включают укорочение и удлинение углеродного скелета, так же как и введение двойной связи.
Обмен фосфолипидов
Фосфолипиды выполняют ряд важных биологических функций. Как большинство полярных липидов, они являются амфифильными соединениями, несущими гидрофобные и гидрофильные группы. Некоторые фосфолипиды, например фосфатидилхолин, представляют собой диполярные ионы, обладающие катионной и анионной группами, и являются основными компонентами клеточных мембранных систем. Например, в миелиновом волокне нерва фосфолипиды и цереброзиды составляют приблизительно 60% сухого веса.
Распределение и обмен
Среди липидов тела фосфолипиды распределены неравномерно. Богатыми источниками фосфолипидов являются липиды тканей различных желез, в особенности печени, а также плазма крови, где они могут составлять до половины всех липидов. Фосфолипиды являются также преобладающими липидами в желтках птичьих яиц и в семенах бобовых растений. Обмен различных фосфолипидов в определенных местах животного организма изучали с использованием различных изотопов, наиболее часто 32Р. Период полупревращения этих липидов колеблется от менее одного дня для фосфатидилхолина печени до более 200 сут для фосфатидилэтаноламина мозга.
Образование
Обмен холестерола
Холестерол — основной стероид организма животных. У взрослого человека содержание холестерола составляет 140–150 г. Около 93% стероида входит в состав мембран и 7% находится в жидкостях организма. Холестерол увеличивает микровязкость мембран и снижает их проницаемость для Н2О и водорастворимых веществ. В крови он представлен в виде свободного холестерола, входящего в оболочку липопротеинов, и его эфиров, которые вместе с ТАГ составляют внутреннее содержимое этих частиц. Содержание холестерола и его эфиров в составе хиломикронов составляет ~ 5 %, в ЛПОНП ~10%, в ЛПНП ~ 50—60% и в ЛПВП ~ 20–30 %. Концентрация холестерола в сыворотке крови взрослого человека в норме равна ~ 200 мг/дл или 5,2 ммоль/л, что соответствует холестериновому равновесию, когда количество холестерола, поступающего в организм, равно количеству холестерола выводимому из организма. Если концентрация холестерола в крови выше нормы, то это указывает на задержку его в организме и является фактором риска развития атеросклероза.
Холестерол является предшественником всех стероидов животного организма:
Холестериновое равновесие поддерживается благодаря тому, что с одной стороны холестерол поступает с пищей (~ 0,3—0,5 г/с) и синтезируется в печени или других тканях (~ 0,5 г/с), а с другой — выводится с калом в виде жёлчных кислот, холестерола желчи, продуктов катаболизма стероидных гормонов, с кожным салом, в составе мембран слущенного эпителия (~ 1,0 г/с)
Биосинтез холестерола
Транспорт холестерола
Эйкозаноиды
Эйкозаноиды, включающие в себя простагландины, тромбоксаны, лейкотриены и ряд других веществ, — высокоактивные регуляторы клеточных функций. Они имеют очень короткий Т1/2, поэтому оказывают эффекты как «гормоны местного действия», влияя на метаболизм продуцирующей их клетки по аутокринному механизму, и на окружающие клетки — по паракринному механизму. Эйкозаноиды участвуют во многих процессах: регулируют тонус гладкомышечных клеток и вследствие этого влияют на АД, состояние бронхов, кишечника, матки. Эйкозаноиды регулируют секрецию воды и натрия почками, влияют на образование тромбов. Разные типы эйкозаноидов участвуют в развитии воспалительного процесса, происходящего после повреждения тканей или инфекции. Такие признаки воспаления, как боль, отёк, лихорадка, в значительной мере обусловлены действием эйкозаноидов. Избыточная секреция эйкозаноидов приводит к ряду заболеваний, например, бронхиальной астме и аллергическим реакциям.
Субстраты для синтеза эйкозаноидов
Основным субстратом для синтеза эйкозаноидов является арахидоновая (ω-6-эйкозатетраеновая) кислота, содержащая 4 двойные связи при углеродных атомах (5, 8, 11, 14). Она может поступать с пищей или синтезироваться из линолевой кислоты. В небольших количествах для синтеза эйкозаноидов могут использоваться ω-6-эйкозатриеновая кислота с тремя двойными связями (5, 8, 11) и ω-3-эйкозапентаеновая кислота, в составе которой имеется 5 двойных связей в положениях 5, 8, 11, 14, 17. Обе минорные эйкозановые кислоты либо поступают с пищей, либо синтезируются из олеиновый и линоленовой кислот соответственно.
Синтез лейкотриенов, ГЭТЕ(гидроксиэйкозатетроеноатов), липоксинов
Синтез лейкотриенов идёт по пути, отличному от пути синтеза простагландинов, и начинается с образования гидроксипероксидов — гидропероксидэйкозатетраеноатов (ГПЭТЕ). Эти вещества или восстанавливаются с образованием гидроксиэйкозатетроеноатов (ГЭТЕ) или превращаются в лейкотриены или липоксины. ГЭТЕ отличаются по положению гидроксильной группы у 5-го, 12-го или 15-го атома углерода, например: 5-ГЭТЕ, 12-ГЭТЕ.
Липоксины (например, основной липоксин А4) включают 4 сопряжённых двойных связи и 3 гидроксильных группы.
Синтез липоксинов начинается с действия на арахидоновую кислоту 15-липоксигеназы, затем происходит ряд реакций, приводящих к образованию липоксина А4
Клинические аспекты обмена эйкозаноидов
Медленно реагирующая субстанция при анафилаксии (МРВ-А) представляет собой смесь лейкотриенов С4, D4 и Е4. Эта смесь в 100—1000 раз более эффективна, чем гистамин или простагландины как фактор, вызывающий сокращение гладкой мускулатуры бронхов. Эти лейкотриены вместе с лейкотрином В4 повышают проницаемость кровеносных сосудов и вызывают приток и активацию лейкоцитов, а также, являются важными регуляторами при многих заболеваниях, в развитии которых участвуют воспалительные процессы или быстрые аллергические реакции (например, при бронхиальной астме).
Использование производных эйкозаноидов в качестве лекарственных средств
Хотя действие всех типов эйкозаноидов до конца не изучено, имеются примеры успешного использования лекарств — аналогов эйкозаноидов для лечения различных заболеваний. Например, аналоги PG Е1 и PG Е2 подавляют секрецию соляной кислоты в желудке, блокируя гистаминовые рецепторы II типа в клетках слизистой оболочки желудка. Эти лекарства, известные как Н2-блокаторы, ускоряют заживление язв желудка и двенадцатиперстной кишки. Способность PG Е2 и PG F2α стимулировать сокращение мускулатуры матки используют для стимуляции родовой деятельности.
Метаболизм сфинголипидов
Сфинголипиды — производные церамида, образующегося в результате соединения аминоспирта сфингозина и жирной кислоты. В группу сфинголипидов входят сфингомиелины и гликосфинголипиды.
Сфингомиелины находятся в мембранах клеток различных тканей, но наибольшее их количество содержится в нервной ткани. Сфингомиелины миелиновых оболочек содержат в основном жирные кислоты с длинной цепью: лигноцериновую и нервоновую кислоты, а сфингомиелин серого вещества мозга содержит преимущественно стеариновую кислоту.
Синтез церамида и его производных
Катаболизм сфингомиелина и его нарушения
В лизосомах находятся ферменты, способные гидролизовать любые компоненты клеток. Эти ферменты называют кислыми гидролазами, так как они активны в кислой среде.
Регуляция липидного обмена
В условиях положительного калорийного баланса значительная часть потенциальной энергии пищевых продуктов запасается в виде энергии гликогена или жира. Во многих тканях даже при нормальном питании, не говоря уже о состояниях калорийного дефицита или голодания, окисляются преимущественно жирные кислоты, а не глюкоза. Причина этого — необходимость сохранения глюкозы для тех тканей (например, для мозга или эритроцитов), которые постоянно в ней нуждаются. Следовательно, регуляторные механизмы, часто с участием гормонов, должны обеспечивать постоянное снабжение всех тканей подходящим топливом в условиях как нормального питания, так и голодания. Сбой в этих механизмах происходит при гормональном дисбалансе (например, в условиях недостатка инсулина при диабете), при нарушении метаболизма в период интенсивной лактации (например, при кетозе крупного рогатого скота) или из-за усиления обменных процессов при беременности (например, при токсикозе беременности у овец). Такие состояния представляют собой патологические отклонения при синдроме голодания; он наблюдается при многих заболеваниях, сопровождающихся снижением аппетита.
Патологии липидного обмена
Тучность
Абеталипопротеинемия
Это относительно редкое генетическое заболевание характеризуется отсутствием в плазме β-липопротеидов плотности, меньшей чем 1,063 и связано с интенсивной демиелинизацией нервных волокон. Апо-В отсутствует в плазме, так же как и в хиломикронах, ЛПОНП и ЛПНП. Уровень триацилглицеринов и холестерина плазмы очень низок. Это свидетельствует о необходимости апо-В для нормального всасывания, синтеза и транспорта триацилглицеринов и холестерина из кишечника и печени. Липиды накапливаются в клетках слизистой оболочки кишечных ворсинок, при этом наблюдается акантоцитоз — сферическая деформация эритроцитов. Более 80% эритроцитов являются акантоцитами, или, как их иначе называют, зубчатыми эритроцитами (от греч. akantha — зубец, шип).
Кахексия
Недостаточное потребление калорий может привести и к полному исчезновению жировой ткани из подкожного и сальникового депо. Это может происходить при опухолях или хроническом инфекционном заболевании, при недостаточном питании или при метаболических нарушениях, таких, как диабет или увеличение щитовидной железы. В экспериментах было показано, что повреждение определенных областей гипоталамуса вызывает анорексию даже у предварительно голодавшего животного. Для анорексии, в происхождении которой имеет значение психогенный компонент, используют термин «anorexia nervosa» (нейрогенная анорексия).
В то время как потеря липидов тела при болезни щитовидной железы связана частично с избыточной мобилизацией резервных липидов, существенной причиной кахексии при голодании, недостаточности тиамина или диабете является сниженная способность организма синтезировать жирные кислоты из углеводных предшественников.
Атеросклероз
Атеросклероз (от греч. ἀθέρος — мякина, кашица + σκληρός — твёрдый, плотный) — хроническое заболевание артерий эластического и мышечно-эластического типа, возникающее вследствие нарушения липидного обмена и сопровождающееся отложением холестерина и некоторых фракций липопротеидов в интиме сосудов. Отложения формируются в виде атероматозных бляшек. Последующее разрастание в них соединительной ткани (склероз), и кальциноз стенки сосуда приводят к деформации и сужению просвета вплоть до облитерации (закупорки). Важно различать атеросклероз от артериосклероза Менкеберга, другой формы склеротических поражений артерий, для которой характерно отложение солей кальция в средней оболочке артерий, диффузность поражения (отсутствие бляшек), развитие аневризм (а не закупорки) сосудов. Атеросклероз сосудов ведет к развитию ишемической болезни сердца.
Молекулярные механизмы патогенеза атеросклероза
Источники
Таганович и др. Биологическая химия. — Минск: Высшая школа, 2013. — ISBN 978-985-06-2321-8.
См. также
— переваривание — Биохимия
Эмульгирование и гидролиз липидов
Первые два этапа переваривания липидов, эмульгирование и гидролиз, происходят практически одновременно. Вместе с этим, продукты гидролиза не удаляются, а оставаясь в составе липидных капелек, облегчают дальнейшее эмульгирование и работу ферментов.
Переваривание в ротовой полости
У взрослых в ротовой полости переваривание липидов не идет, хотя длительное пережевывание пищи способствует частичному эмульгированию жиров.
Переваривание в желудке
Собственная липаза желудка у взрослого не играет существенной роли в переваривании липидов из-за ее небольшого количества и того, что ее оптимум рН 4,5-5,5. Также влияет отсутствие эмульгированных жиров в обычной пище (кроме молока).
Тем не менее, у взрослых теплая среда и перистальтика желудка вызывает некоторое эмульгирование жиров. При этом даже низко активная липаза расщепляет незначительные количества жира, что важно для дальнейшего переваривания жиров в кишечнике, т.к. наличие хотя бы минимального количества свободных жирных кислот облегчает эмульгирование жиров в двенадцатиперстной кишке и стимулирует секрецию панкреатической липазы.
Переваривание в кишечнике
Под влиянием перистальтики ЖКТ и составных компонентов желчи пищевой жир эмульгируется. Образующиеся при переваривании лизофосфолипиды также являются хорошим поверхностно-активным веществом, поэтому они способствуют дальнейшему эмульгированию пищевых жиров и образованию мицелл. Размер капель такой жировой эмульсии не превышает 0,5 мкм.
Гидролиз эфиров ХС осуществляет холестерол-эстераза панкреатического сока.
Роль колипазы в действии липазы |
Переваривание ТАГ в кишечнике осуществляется под воздействием панкреатической липазы с оптимумом рН 8,0-9,0. В кишечник она поступает в виде пролипазы, для проявления ее активности требуется колипаза, которая помогает липазе расположиться на поверхности липидной капли.
Колипаза, в свою очередь, активируется трипсином и затем образует с липазой комплекс в соотношении 1:1. Панкреатическая липаза отщепляет жирные кислоты, связанные с С1 и С3 атомами углерода глицерола. В результате ее работы остаются 2-моноацилглицеролы (2-МАГ), которые всасываются или превращаются моноглицерол-изомеразой в 1-МАГ. Последний гидролизуется до глицерола и жирной кислоты. Примерно 3/4 ТАГ после гидролиза остаются в форме 2-МАГ и только 1/4 часть ТАГ гидролизуется полностью.
Полный ферментативный гидролиз триацилглицерола
В панкреатическом соке также имеется активируемая трипсином фосфолипаза А2, отщепляющая в фосфолипидах жирную кислоту от С2, также обнаружена активность фосфолипазы С и лизофосфолипазы.
Действие фосфолипазы А2 и лизофосфолипазы на примере фосфатидилхолина
В кишечном соке также имеется активность фосфолипазы А2 и фосфолипазы С.
Для работы всех указанных гидролитических ферментов в кишечнике необходимы ионы Са2+, способствующие удалению жирных кислот из зоны катализа.
Точки действия фосфолипаз
Образование мицелл
В результате воздействия на эмульгированные жиры ферментов панкреатического и кишечного соков образуются 2-моноацилглицеролы, свободные жирные кислоты и свободный холестерол, формирующие структуры мицеллярного типа (размер уже около 5 нм). Свободный глицерол всасывается напрямую в кровь.
Схематичное изображение переваривания липидов
Полученные смешанные мицеллы достигают эпителия кишечника и их компоненты диффундируют в клетки и попадают в гладкую эндоплазматическую сеть. Желчные кислоты почти не всасываются и остаются в просвете кишечника. Далее желчные кислоты достигают подвздошной кишки и всасываются там (Кишечно-печеночная циркуляция).
Липидный обмен: основные этапы метаболизма жиров
Липидный обмен – это метаболизм жиров и жироподобных веществ. Обмен липидов состоит из четырех этапов: расщепления, всасывания, промежуточного и конечного обменов.
Липидный обмен: расщепление. Большинство липидов, которые входят в состав пищи, усваиваются организмом только после предварительного расщепления. Под воздействием пищеварительных соков они гидролизируются (расщепляются) до простых соединений (глицерола, высших жирных кислот, стеролов, фосфорной кислоты, азотистых оснований, высших спиртов и т.п.), которые всасываются слизистой оболочкой пищеварительного канала.
В ротовой полости пища, содержащая липиды, механически измельчается, перемешивается, смачивается слюной и превращается в пищевой ком. Измельченные пищевые массы по пищеводу поступают в желудок. Здесь они перемешиваются и просачиваются желудочным соком. Желудочный сок содержит липолитический фермент – липазу, которая может расщеплять эмульгированые жиры. Из желудка пищевые массы мелкими порциями поступают в двенадцатиперстную кишку, потом в тощую и подвздошную. Здесь завершается процесс расщепления липидов и происходит всасывание продуктов их гидролиза. В расщеплении липидов принимают участие желчь, сок поджелудочной железы и кишечный сок.
Желчь – это секрет, который синтезируется гепатоцитами. В состав желчи входят желчные кислоты и пигменты, продукты распада гемоглобина, муцин, холестерол, лецитин, жиры, некоторые ферменты, гормоны и т.п. Желчь принимает участие в эмульгировании липидов, их расщеплении и всасывании; способствует нормальной перистальтике кишечника; проявляет бактерицидное действие на микрофлору кишечника. Желчные кислоты синтезируются из холестерола. Жирные кислоты снижают поверхностное натяжение жировых капель, эмульгируя их, стимулируют выделение сока поджелудочной железы, а также активируют действие многих ферментов. В тонком отделе кишечника пищевые массы просачиваются соком поджелудочной железы, в состав которого входят гидрокарбонат натрия и липолитические ферменты: липазы, холинэстеразы, фосфолипазы, фосфатазы и т.д.
Липидный обмен: всасывание. Большая часть липидов всасывается в нижней части двенадцатиперстной и в верхней части тощей кишок. Продукты расщепления липидов пищи всасываются эпителием ворсинок. Всасывающая поверхность эпителиальной клетки увеличена за счет микроворсинок. Конечные продукты гидролиза липидов состоят из мелких частиц жира, ди- и моноглицеридов, высших жирных кислот, глицерола, глицерофосфатов, азотистых основ, холестерола, высших спиртов и фосфорной кислоты. В толстом отделе кишечника липолитические ферменты отсутствуют. Слизь толстой кишки содержит незначительное количество фосфолипидов. Холестерол, который не всосался, восстанавливается до копростерина кала.
Липидный обмен: промежуточный обмен. У липидов он имеет некоторые особенности, которые заключаются в том, что в тонком отделе кишечника сразу после всасывания продуктов расщепления происходит ресинтез липидов, присущих человеку.
Липидный обмен: конечный обмен. Основными конечными продуктами липидного обмена являются углекислый газ и вода. Последняя выделяется в составе мочи и пота, частично кала, выдыхаемого воздуха. Углекислый газ выделяется преимущественно легкими. Конечный обмен для отдельных групп липидов имеет свои особенности.
Нарушения липидного обмена. Липидный обмен нарушается при многих инфекционных, инвазионных и незаразных болезнях. Патология липидного обмена наблюдается при нарушении нейрогуморальной регуляции процессов расщепления, всасывания, биосинтеза и липолиза. Среди нарушения обмена липидов наиболее часто регистрируют ожирение.
Ожирение — это предрасположенность организма к чрезмерному увеличению массы тела вследствие избыточного отложения жира в подкожной клетчатке и других тканях организма и межклеточном пространстве. Жиры откладываются внутри жировых клеток в виде триглицеридов. Количество липоцитов не увеличивается, а только увеличивается их объем. Именно такая гипертрофия липоцитов является основным фактором ожирения.
что это, строение, состав и функции
Липид — это жироподобный компонент в организме человека, который принимает активное участие в процессах обеспечения жизнедеятельности.
Одним из вариантов влияния липидов, является корректировка гормонального фона человека и процессов обмена его в организме.
Пятая часть всех жиров поступает в организм с продуктами питания, и посредством тонкого отдела кишечника, липиды биотрансформируются в липопротеиды, которые имеют функцию транспортировщика холестериновых молекул по всему организму.
Кроме функции транспортировщика, жиры выполняют в составе организма такие основные обязанности:
- Энергетическая функция — это источник и запас энергии;
- Структурная функция — липопротеиды входят в состав каждой клеточной мембраны;
- Функция защиты в каждой клетке. Защищенный слой также находится сверху на кожных покровах и охраняет организм от влияния на него внешней среды;
- Регуляторные обязанности — липопротеиды принимают участие во многих процессах, которые происходят внутри организма.
Классификация жиров
Строение липидов разделяется на три большие группы:
- Простые жиры;
- Сложные по структуре жиры;
- Группа оксилипины.
Входят в подгруппу простых жиров молекулы, которые в составе имеют ионы кислорода, а также водорода и атомы углерода.
К ним относятся:
- Спиртосодержащие жиры;
- Жирные молекулы кислот;
- Альдегиды, состоящие из 12-ти атомного углерода;
- Триглицериды — это жировые отложения в подкожной клетчатке;
- Эфиры высокомолекулярного жирового спирта — воски.
Состав сложных липидных соединений состоит из атомов углерода, а также кислорода с атомами водорода, но в их состав входят и дополнительные компоненты. Сложные липидные соединения состоят из таких подгрупп, которые являются полярными и нейтральными.
Полярной подгруппой липидных соединений являются:
- Соединение углевода с жиром — гликолипиды;
- Сложные соединения — фосфолипиды;
- Произвольные молекулы аминоспиртов – сфинголипиды.
Нейтральные группы сложных липидных соединений подразделяются на:
- Соединения ацилглицеринов, в которые включены моноглицериды и соединения диглицеридов;
- Молекула N-ацетил этаноламин. Структура N-ацетил этаноламина — это этаноламины жиросодержащих кислот;
- Липидные соединения — церамиды;
- Содержащие насыщенные жиром кислоты стериновые эфиры. Это сложные липидные соединения высокомолекулярных спиртов.
В группу оксилипидов входят такие виды жиров.
Разделение происходит по пути их оксигенирования:
- Циклооксигеназный путь;
- Липоксигеназный путь.
Значение в организме липидов
Жиросодержащие кислоты относятся к липидам простых молекулярных формул.
Разделяются жирные кислоты на:
- Насыщенные молекулы жиром — это молекулы, не имеющие полярности с двух сторон;
- Ненасыщенные жиром кислоты — это молекулы липидов с одним хвостом не полярным, и имеющие больше, чем 2 углеродные связи.
Насыщенные жиром кислоты называются:
- Стеариновая кислота;
- Пальмитиновая жирная кислота.
К полиненасыщенным жирами кислотам относятся:
- Линолевая ПНЖК;
- Олеиновая ПНЖК.
Полиненасыщенные жиром кислоты необходимы для организма и должны в достаточном количестве поступать с пищей.
ПНЖК являются важным компонентом в синтезировании структур мембран клеток, а также являются частью многих активных молекул в организме, которые предотвращают развитие таких патологий у человека:
- Предохраняют эндокринную систему от сбоя;
- Контролируют выработку половых гормонов и поддерживают в нормальном состоянии репродуктивную функцию человека;
- Предотвращают развитие системного атеросклероза, а также системных патологий — артериальной гипертензии, тромбоза;
- Поддерживают в нормальном состоянии структуру и функции миокарда, и предотвращают развитие сердечных патологий — аритмии и нестабильной стенокардии, а также мозгового и сердечного инфаркта.
Эйкозаноиды
Эйкозаноиды относятся к простым в строении молекул липидов, и отвечают за регуляторные функции в организме человека. Данные липиды имеют уникальную структуру и химическую формулу, что обеспечивает их такими свойствами.
Арахидоновая кислота есть основой для формирования и синтезирования молекул эйкозаноидов.
Данная кислота относится к категории полиненасыщенных жиром кислот, что гарантируют молекулам эйкозаноидов такие свойства и функции в организме:
- Корректирует в организме процессы воспаления;
- Занимается повышением проницаемости артериальных оболочек, что происходит при процессе видоизменения в них;
- Активизируют выход из состава ткани иммунной системы молекул лейкоцитов;
- Помогают иммунной системе производить выброс ферментов, которые захватывают чужеродные вещества, а также инфекционных и вирусных агентов.
Также молекулы эйкозаноидов принимают активное участие в функционировании системы гемостаза и корректируют процесс свёртывания состава плазменной крови.
Они могут способствовать правильному свёртыванию — если есть необходимость, расширить артериальные оболочки, эйкозаноиды расширяют ее, снимая агрегацию состава крови.
Если потребуется усилить тромбообразование, тогда эйкозаноиды приводят к сокращению мышечные структуры артериальных оболочек, что способствует остановке кровотечения и образования тромба.
Эйкозаноиды – обширная группа физиологически и фармакологически активных соединенийк содержанию ↑Из чего состоят?
Сложные молекулы липидов — это достаточно важная группа жировых компонентов в организме (фосфолипиды, молекулы гликолипидов и сфинголипиды):
- Жиры вместе с простыми липидными молекулами принимают участие в построении клеточных мембран;
- Обеспечивают взаимодействие на межклеточном уровне нервных волокон, которые передают импульсы при помощи миелиновых оболочек;
- Сложные в строении липиды, являются компонентом сурфактанта. Данное вещество обеспечивает правильную работу системы дыхания и ее органов, а также предотвращают спадание среднего диаметра артерий (альвеолы) при выдохе воздуха из организма;
- Сложного строения липиды играют основные роли на мембранных поверхностях клеток.
Очень велики свойства в деятельности таких органов:
- Цереброспинальной жидкости;
- Нервных волокон;
- Сердечного миокарда.
Основная функция липидов — это построение мембран клеток.
При формировании мембран принимают участие такие типы липидных соединений:
- Жироподобный спирт — холестерол;
- Липидо-углеводное соединение гликолипиды;
- Соединения карбоновых кислот и спиртовых эфиров — фосфолипиды.
Содержание липидов в разных клетках сильно варьируетк содержанию ↑Мембрана по своей структуре двухслойная и жиры находятся в пространстве между клеткой и наружной средой. Такая структура клеточной мембраны позволяет ей не терять форму и увеличивает ее крепость.
Функции
Липиды распределены в каждой клетке организма, но у каждых из них есть свои определенные функциональные обязанности, которые они выполняют. Существуют основные обязанности, это те функции, что выполняют липидные соединения, а дополнительные функции, это те, в которых липиды являются помощниками.
Функции липидных соединений:
Энергетическая функция.
Липидные соединения в процессе распадения выделяют много энергии, которая необходима организму:
- Для контролирования процесса поступления в клетки организма молекул кислорода;
- Формирование и обеспечение клеток питательными веществами;
- Корректирование дыхания и роста клеток.
Резервная функция липидов в организме.
Липидные соединения откладываются в подкожной клетчатке и обеспечивают запас жира в организме на случай непредвиденных ситуаций:
- В период беременности женщин, липиды обеспечивают развитие плода;
- При резком похудении, жиры восполняют запас жира из резерва, чтобы поддержать внутренние органы.
Теплорегулирующая функция позволяет организму справляться с перепадами температурного режима, и поддерживать необходимо температуру внутри тела, независимо от температуры окружающей среды.
Липид является основной частью мембран клеток организма, и в этом заключается основная структурная функция. Без липопротеидов, которые доставляют в клетки молекулы холестерола, структурная функция не могла бы выполняться.
Липопротеиды — это основные транспортные перевозчики жира по организму, поэтому они выполняют транспортную функцию липидных соединений.К второстепенным функциям липидных соединений относятся:
Ферментативная второстепенная функциональная обязанность липида:
- Защита слизистой тонкого кишечника от чрезмерного влияния на расщепление липидов ферментов, вырабатываемых клетками поджелудочной железы;
- Уничтожение лишних ферментов происходит при помощи молекул фосфолипидов и холестерола.
Сигнальную функцию выполняют молекулы гликолипиды:
- Передача импульсов между волокнами нервной системы, а также между головным и спинным мозгом при помощи цереброспинальной жидкости;
- Распознавание импульсов на внутриклеточном уровне, которые подают липидоподобные соединения для выявления необходимых веществ для клетки.
Регуляторные обязанности липидов в организме:
- Регуляторная политика липида в клеточной мембране — это режим пропуска полезных элементов в клетку;
- Синтезирование гормонов в организме регулирующих репродуктивную функцию у человека;
- Регулирование защиты организма при помощи функционировании иммунной системы.
Как осуществляется обмен между липидами?
Обмен между липидами — это процесс, происходящий на клеточном уровне и имеет биохимическую основу.
Процессы происходят в строгой последовательности, и каждый имеет свою характеристику:
Процесс обмена | Характеристика процесса |
---|---|
Фосфолипидный обмен | · фосфолипиды распределены в организме не равномерно; |
· 50,0% от всех молекул содержатся в плазменной крови и в клетках печени; | |
· обменные процессы зависят от типов фосфолипидов и могут продолжаться от 1 дня до 200 дней. | |
Обмен холестерола | · 80,0% молекул синтезируется в клетках печени; |
· 20,0% попадает в организм с едой; | |
· избыточный холестерол выводится при помощи кишечника. | |
Катаболизм жиросодержащих кислот | · происходит в процессе β-окисления; |
· достаточно редко принимает участие α- окисления или же ω-окисления. | |
Липогенез | · синтезирование молекул липидов, которое происходит в клетках печени; |
· также транспортировка липидов из тонкого отдела кишечника. | |
Липолиз | · при участии липазы происходит процесс катаболизма; |
· расщепление низкомолекулярных молекул холестерина в клетках печени при помощи желчных кислот. | |
Процесс синтезирования кетоновых тел | · молекулы ацетоацетил-КоА начинают данный тип процесса синтеза. |
Взаимопревращение жиросодержащих кислот | · из кислот, содержащих липиды в клетках печени, начинается взаимопревращение их в кислоты, которые наиболее свойственны и необходимы человеку. |
Очень важно, чтобы процесс обмена липидами был всегда в норме, поэтому необходимое количество извне, человек должен получать с пищей. Только необходимо контролироваться процесс питания и не употреблять холестерин с продуктами питания больше, чем 70,0 грамм — 140,0 грамм в сутки.
Норма в сутки употребления жира зависит от состояния организма и от сопутствующих патологий, особенно сердечных патологий и заболеваний системы кровотока, при которых потребление холестерина извне, нужно сократить до минимума.
Не стоит забывать, что отказываться от холестерина совсем нельзя, и употребление животных продуктов с низким содержанием жи
Липидный обмен — Википедия. Что такое Липидный обмен
Липидный обмен — или метаболизм липидов, представляет собой сложный биохимический и физиологический процесс, происходящий в некоторых клетках живых организмов.
Липидный обмен включает в себя следующие процессы:
Общие сведения о липидах
Термин «липиды» объединяет вещества, обладающие общим физическим свойством — гидрофобностью, то есть нерастворимостью в воде. Однако такое определение в настоящее время является не совсем корректным ввиду, того, что некоторые группы (триацилглицерины, фосфолипиды, сфинголипиды и др.) проявляют себя как амфифильные или дифильные соединения, т.е. способные растворяться как в полярных веществах (гидрофильность), так и в неполярных (гидрофобность). По структуре липиды настолько разнообразны, что у них отсутствует общий признак химического строения. Липиды разделяют на классы, в которые объединяют молекулы, имеющие сходное химическое строение и общие биологические свойства.
Основную массу липидов в организме составляют жиры — триацилглицеролы, служащие формой депонирования энергии. Жиры располагаются преимущественно в подкожной жировой ткани и выполняют также функции теплоизоляционной и механической защиты.
Фосфолипиды — большой класс липидов, получивший своё название из-за остатка фосфорной кислоты, придающего им свойства амфифильности. Благодаря этому свойству фосфолипиды формируют бислойную структуру мембран, в которую погружены белки. Клетки или отделы клеток, окружённые мембранами, отличаются по составу и набору молекул от окружающей среды, поэтому химические процессы в клетке разделены и ориентированы в пространстве, что необходимо для регуляции метаболизма.
Стероиды, представленные в животном мире холестеролом и его производными, выполняют разнообразные функции. Холестерол — важный компонент мембран и регулятор свойств гидрофобного слоя. Производные холестерола (жёлчные кислоты) необходимы для переваривания жиров. Стероидные гормоны, синтезируемые из холестерола, участвуют в регуляции энергетического, водно-солевого обменов, половых функций. Кроме стероидных гормонов, многие производные липидов выполняют регуляторные функции и действуют, как и гормоны, в очень низких концентрациях. Например, тромбоцитактивирующий фактор — фосфолипид особой структуры — оказывает сильное влияние на агрегацию тромбоцитов в концентрации 10-12 М; эйкозаноиды, производные полиеновых жирных кислот, вырабатываемые почти всеми типами клеток, вызывают разнообразные биологические эффекты в концентрациях не более 10-9 М. Из приведённых примеров следует, что липиды обладают широким спектром биологических функций.
В тканях человека количество разных классов липидов существенно различается. В жировой ткани жиры составляют до 75 % сухого веса. В нервной ткани липидов содержится до 50 % сухого веса, основные из них фосфолипиды и сфингомиелины (30 %), холестерол (10 %), ганглиозиды и цереброзиды (7 %). В печени общее количество липидов в норме не превышает 10-13 %.
Нарушения обмена липидов приводят к развитию многих заболеваний, но среди людей наиболее распространены два из них — ожирение и атеросклероз.
Расщепление, переваривание и всасывание пищевых липидов
Суточная потребность человека в жирах составляет 70-80 г, хотя в пищевом рационе их содержание может колебаться от 80 до 130 г.
Переваривание липидов в желудке
В желудке имеется фермент липаза, способный катализировать расщепление триацилглицеролов. Однако оптимальной средой ее действия является среда, близкая к нейтральной. Поэтому липаза в желудке у взрослых людей практически неактивна из-за малых значений pH.
Переваривание липидов в кишечнике
В двенадцатиперстной кишке пища подвергается действию желчи и сока поджелудочной железы. На первом этапе там происходит эмульгирование жиров
Эмульгирование жиров
Жиры составляют до 90 % липидов, поступающих с пищей. Переваривание жиров происходит в тонком кишечнике, однако уже в желудке небольшая часть жиров гидролизуется под действием «липазы языка». Этот фермент синтезируется железами на дорсальной поверхности языка и относительно устойчив при кислых значениях рН желудочного сока. Поэтому он действует в течение 1-2 ч на жиры пищи в желудке. Однако вклад этой липазы в переваривание жиров у взрослых людей незначителен. Основной процесс переваривания происходит в тонкой кишке.
Так как жиры — нерастворимые в воде соединения, то они могут подвергаться действию ферментов, растворённых в воде только на границе раздела фаз вода/жир. Поэтому действию панкреатической липазы, гидролизующей жиры, предшествует эмульгирование жиров. Эмульгирование (смешивание жира с водой) происходит в тонком кишечнике под действием солей жёлчных кислот. Жёлчные кислоты представляют собой в основном конъюгированные жёлчные кислоты: таурохолевую, гликохолевую и другие кислоты.
Гормоны, активирующие переваривание жиров
При поступлении пищи в желудок, а затем в кишечник клетки слизистой оболочки тонкого кишечника начинают секретировать в кровь пептидный гормон холецистокинин (панкреозимин). Этот гормон действует на жёлчный пузырь, стимулируя его сокращение, и на экзокринные клетки поджелудочной железы, стимулируя секрецию пищеварительных ферментов, в том числе панкреатической липазы. Другие клетки слизистой оболочки тонкого кишечника в ответ на поступление из желудка кислого содержимого выделяют гормон секретин. Секретин — гормон пептидной природы, стимулирующий секрецию гидрокарбоната (НСО3—) в сок поджелудочной железы.
Нарушения переваривания и всасывания жиров
Нарушение переваривания жиров может быть следствием нескольких причин. Одна из них — нарушение секреции жёлчи из жёлчного пузыря при механическом препятствии оттоку жёлчи. Это состояние может быть результатом сужения просвета жёлчного протока камнями, образующимися в жёлчном пузыре, или сдавлением жёлчного протока опухолью, развивающейся в окружающих тканях. Уменьшение секреции жёлчи приводит к нарушению эмульгирования пищевых жиров и, следовательно, к снижению способности панкреатической липазы гидролизовать жиры.
Нарушение секреции сока поджелудочной железы и, следовательно, недостаточная секреция панкреатической липазы также приводят к снижению скорости гидролиза жиров. В обоих случаях нарушение переваривания и всасывания жиров приводит к увеличению количества жиров в фекалиях — возникает стеаторея (жирный стул). В норме содержание жиров в фекалиях составляет не более 5%. При стеаторее нарушается всасывание жирорастворимых витаминов (A, D, E, К) и незаменимых жирных кислот, поэтому при длительно текущей стеаторее развивается недостаточность этих незаменимых факторов питания с соответствующими клиническими симптомами. При нарушении переваривания жиров плохо перевариваются и вещества нелипидной природы, так как жир обволакивает частицы пищи и препятствует действию на них ферментов.
Всасывание липидов в кишечнике
Ресинтез жиров в слизистой оболочке тонкого кишечника
Основная часть всосавшихся в тонком кишечнике липидов принимает участие в ресинтезе триацилглицеринов. Для этого в эндоплазматическом ретикулуме энтероцитов работают специальные ферменты
Факторы, влияющие на всасывание липидов
Катаболизм липидов
Катаболизм липидов — совокупность всех катаболических процессов липидов, включающая несколько стадий:
Липолиз
Липолиз — катаболический процесс, результатом которого является расщепление жиров, происходящее под действием фермента липазы.
Окисление жирных кислот
β-Окисление жирных кислот
Процесс β-окисления высших жирных кислот (ВЖК) складывается из следующих этапов:
- активация ВЖК на наружной поверхности мембраны митохондрий при участии АТФ, кофермента А и ионов магния с образованием активной формы ВЖК (ацил — КоА).
- транспорт жирных кислот внутрь митохондрий возможен при присоединении активной формы жирной кислоты к карнитину, находящемуся на наружной поверхности внутренней мембраны митохондрий. Образуется ацил-карнитин, обладающий способностью проходить через мембрану. На внутренней поверхности комплекс распадается и карнитин возвращается на наружную поверхность мембраны.
- внутримитохондриальное окисление жирных кислот состоит из последовательных ферментативных реакций. В результате одного завершенного цикла окисления происходит отщепление от жирной кислоты одной молекулы ацетил-КоА, т.е. укорочение жирнокислотной цепи на два углеродных атома. При этом в результате двух дегидрогеназных реакций восстанавливается ФАД до ФАДН2 и НАД+ до НАДН2. Таким образом завершая 1 цикл β—окисления ВЖК, в результате которого ВЖК укоротилось на 2 углеродных звена. При β-окислении выделилось 5АТФ и 12АТФ выделилось при окислении ацетил-КоА в цикле Кребса и сопряженных с ним ферментов дыхательной цепи. Окисление ВЖК будет происходить циклически одинаково, но только до последней стадии — стадии превращения масляной кислоты (бутирил-КоА), которая имеет свои особенности, которые необходимо учитывать при подсчёте суммарного энергетического эффекта окисления ВЖК, когда в результате одного цикла образуется 2 молекулы ацетил-КоА, одна из них проходила β-окисление с выделением 5АТФ, а другая нет.
ω-Окисление жирных кислот
Хотя для жирных кислот наиболее характерно β-окисление, встречаются также два других типа окисления: α-и ω-окисления. Окисление жирных кислот с длинной цепью до 2-оксикислот и затем до жирных кислот с числом атомов углерода на один меньше, чем в исходном субстрате, было показано в микросомах мозга и других тканей, а также в растениях. 2-Оксикислоты с длинной цепью являются компонентами липидов мозга.
Окисление ненасыщенных жирных кислот
Около половины жирных кислот в организме человека ненасыщенные. β-Окисление этих кислот идёт обычным путём до тех пор, пока двойная связь не окажется между третьим и четвёртым атомами углерода. Затем фермент еноил-КоА изомераза перемещает двойную связь из положения 3-4 в положение 2-3 и изменяет цис-конформацию двойной связи на транс-, которая требуется для β-окисления. В этом цикле β-окисления первая реакция дегидрирования не происходит, так как двойная связь в радикале жирной кислоты уже имеется. Далее циклы β-окисления продолжаются, не отличаясь от обычного пути.
Нарушения окисления жирных кислот
Нарушение переноса жирных кислот в митохондрии.
Скорость переноса жирных кислот внутрь митохондрий, а следовательно и скорость процесса β-окисления, зависит от доступности карнитина и скорости работы фермента карнитинацилтрансферазы I.
β-Окисление могут нарушать следующие факторы:
- длительный гемодиализ, в ходе которого организм теряет карнитин;
- длительная ацидурия, при которой карнитин выводится как основание с органическими кислотами;
- лечение больных сахарным диабетом препаратами сульфонилмочевины, ингибирующими карнитинацилтрансферазу I;
- низкая активность ферментов, синтезирующих карнитин;
- наследственные дефекты карнитинацил-трансферазы I.
Окисление кетоновых тел
При длительном голодании кетоновые тела становятся основным источником энергии для скелетных мышц, сердца и почек. Таким образом глюкоза сохраняется для окисления в мозге и эритроцитах. Уже через 2-3 дня после начала голодания концентрация кетоновых тел в крови достаточна для того, чтобы они проходили в клетки мозга и окислялись, снижая его потребности в глюкозе.
Перекисное окисление липидов
Кислород, необходимый организму для функционирования ЦПЭ и многих других реакций, является одновременно и токсическим веществом, если из него образуются так называемые активные формы.
К активным формам кислорода относят:
Анаболизм липидов
Липогенез
Липогенез — процесс синтеза жирных кислот, основным источником которого является углеводы.
С пищей в организм поступают разнообразные жирные кислоты, в том числе и незаменимые. Значительная часть заменимых жирных кислот синтезируется в печени, в меньшей степени — в жировой ткани и лактирующей молочной железе. Источником углерода для синтеза жирных кислот служит ацетил-КоА, образующийся при распаде глюкозы в абсорбтивном периоде. Таким образом, избыток углеводов, поступающих в организм, трансформируется в жирные кислоты, а затем в жиры.
Синтез кетоновых тел
Все кетоновые тела берут начало от ацетоацетил-КоА, который образуется при конденсации 2-х молекул ацетил-КоА по принципу «голова в хвост». Реакция когденсации происходит в митохондриях. В печени ацетоацетил-КоА взаимодействует еще с одной молекулой ацетил-КоА и превращается в ГОМГ-КоА- важное промежуточное вещество для синтеза холестерола и стероидов.
Взаимопревращения жирных кислот
Организм получает жирные кислоты из пищи и путём липогенеза из ацетил-КоА, образующегося из углеводов и некоторых аминокислот. Состав смеси жирных кислот пищи существенно варьирует по степени ненасыщенности и длине цепи. Липогенез у высших животных включает только образование пальмитата, из которого образуются другие насыщенные и мононенасыщенные кислоты. Из смеси имеющихся жирных кислот в печени животного образуется свойственный данному виду набор жирных кислот; однако на характере синтезируемых жирных кислот сказывается также и диета. Процессы утилизации жирных кислот пищи включают укорочение и удлинение углеродного скелета, так же как и введение двойной связи.
Обмен фосфолипидов
Фосфолипиды выполняют ряд важных биологических функций. Как большинство полярных липидов, они являются амфифильными соединениями, несущими гидрофобные и гидрофильные группы. Некоторые фосфолипиды, например фосфатидилхолин, представляют собой диполярные ионы, обладающие катионной и анионной группами, и являются основными компонентами клеточных мембранных систем. Например, в миелиновом волокне нерва фосфолипиды и цереброзиды составляют приблизительно 60% сухого веса.
Распределение и обмен
Среди липидов тела фосфолипиды распределены неравномерно. Богатыми источниками фосфолипидов являются липиды тканей различных желез, в особенности печени, а также плазма крови, где они могут составлять до половины всех липидов. Фосфолипиды являются также преобладающими липидами в желтках птичьих яиц и в семенах бобовых растений. Обмен различных фосфолипидов в определенных местах животного организма изучали с использованием различных изотопов, наиболее часто 32Р. Период полупревращения этих липидов колеблется от менее одного дня для фосфатидилхолина печени до более 200 сут для фосфатидилэтаноламина мозга.
Образование
Обмен холестерола
Холестерол — основной стероид организма животных. У взрослого человека содержание холестерола составляет 140–150 г. Около 93% стероида входит в состав мембран и 7% находится в жидкостях организма. Холестерол увеличивает микровязкость мембран и снижает их проницаемость для Н2О и водорастворимых веществ. В крови он представлен в виде свободного холестерола, входящего в оболочку липопротеинов, и его эфиров, которые вместе с ТАГ составляют внутреннее содержимое этих частиц. Содержание холестерола и его эфиров в составе хиломикронов составляет ~ 5 %, в ЛПОНП ~10%, в ЛПНП ~ 50—60% и в ЛПВП ~ 20–30 %. Концентрация холестерола в сыворотке крови взрослого человека в норме равна ~ 200 мг/дл или 5,2 ммоль/л, что соответствует холестериновому равновесию, когда количество холестерола, поступающего в организм, равно количеству холестерола выводимому из организма. Если концентрация холестерола в крови выше нормы, то это указывает на задержку его в организме и является фактором риска развития атеросклероза.
Холестерол является предшественником всех стероидов животного организма:
Холестериновое равновесие поддерживается благодаря тому, что с одной стороны холестерол поступает с пищей (~ 0,3—0,5 г/с) и синтезируется в печени или других тканях (~ 0,5 г/с), а с другой — выводится с калом в виде жёлчных кислот, холестерола желчи, продуктов катаболизма стероидных гормонов, с кожным салом, в составе мембран слущенного эпителия (~ 1,0 г/с)
Биосинтез холестерола
Транспорт холестерола
Эйкозаноиды
Эйкозаноиды, включающие в себя простагландины, тромбоксаны, лейкотриены и ряд других веществ, — высокоактивные регуляторы клеточных функций. Они имеют очень короткий Т1/2, поэтому оказывают эффекты как «гормоны местного действия», влияя на метаболизм продуцирующей их клетки по аутокринному механизму, и на окружающие клетки — по паракринному механизму. Эйкозаноиды участвуют во многих процессах: регулируют тонус гладкомышечных клеток и вследствие этого влияют на АД, состояние бронхов, кишечника, матки. Эйкозаноиды регулируют секрецию воды и натрия почками, влияют на образование тромбов. Разные типы эйкозаноидов участвуют в развитии воспалительного процесса, происходящего после повреждения тканей или инфекции. Такие признаки воспаления, как боль, отёк, лихорадка, в значительной мере обусловлены действием эйкозаноидов. Избыточная секреция эйкозаноидов приводит к ряду заболеваний, например, бронхиальной астме и аллергическим реакциям.
Субстраты для синтеза эйкозаноидов
Основным субстратом для синтеза эйкозаноидов является арахидоновая (ω-6-эйкозатетраеновая) кислота, содержащая 4 двойные связи при углеродных атомах (5, 8, 11, 14). Она может поступать с пищей или синтезироваться из линолевой кислоты. В небольших количествах для синтеза эйкозаноидов могут использоваться ω-6-эйкозатриеновая кислота с тремя двойными связями (5, 8, 11) и ω-3-эйкозапентаеновая кислота, в составе которой имеется 5 двойных связей в положениях 5, 8, 11, 14, 17. Обе минорные эйкозановые кислоты либо поступают с пищей, либо синтезируются из олеиновый и линоленовой кислот соответственно.
Синтез лейкотриенов, ГЭТЕ(гидроксиэйкозатетроеноатов), липоксинов
Синтез лейкотриенов идёт по пути, отличному от пути синтеза простагландинов, и начинается с образования гидроксипероксидов — гидропероксидэйкозатетраеноатов (ГПЭТЕ). Эти вещества или восстанавливаются с образованием гидроксиэйкозатетроеноатов (ГЭТЕ) или превращаются в лейкотриены или липоксины. ГЭТЕ отличаются по положению гидроксильной группы у 5-го, 12-го или 15-го атома углерода, например: 5-ГЭТЕ, 12-ГЭТЕ.
Липоксины (например, основной липоксин А4) включают 4 сопряжённых двойных связи и 3 гидроксильных группы.
Синтез липоксинов начинается с действия на арахидоновую кислоту 15-липоксигеназы, затем происходит ряд реакций, приводящих к образованию липоксина А4
Клинические аспекты обмена эйкозаноидов
Медленно реагирующая субстанция при анафилаксии (МРВ-А) представляет собой смесь лейкотриенов С4, D4 и Е4. Эта смесь в 100—1000 раз более эффективна, чем гистамин или простагландины как фактор, вызывающий сокращение гладкой мускулатуры бронхов. Эти лейкотриены вместе с лейкотрином В4 повышают проницаемость кровеносных сосудов и вызывают приток и активацию лейкоцитов, а также, являются важными регуляторами при многих заболеваниях, в развитии которых участвуют воспалительные процессы или быстрые аллергические реакции (например, при бронхиальной астме).
Использование производных эйкозаноидов в качестве лекарственных средств
Хотя действие всех типов эйкозаноидов до конца не изучено, имеются примеры успешного использования лекарств — аналогов эйкозаноидов для лечения различных заболеваний. Например, аналоги PG Е1 и PG Е2 подавляют секрецию соляной кислоты в желудке, блокируя гистаминовые рецепторы II типа в клетках слизистой оболочки желудка. Эти лекарства, известные как Н2-блокаторы, ускоряют заживление язв желудка и двенадцатиперстной кишки. Способность PG Е2 и PG F2α стимулировать сокращение мускулатуры матки используют для стимуляции родовой деятельности.
Метаболизм сфинголипидов
Сфинголипиды — производные церамида, образующегося в результате соединения аминоспирта сфингозина и жирной кислоты. В группу сфинголипидов входят сфингомиелины и гликосфинголипиды.
Сфингомиелины находятся в мембранах клеток различных тканей, но наибольшее их количество содержится в нервной ткани. Сфингомиелины миелиновых оболочек содержат в основном жирные кислоты с длинной цепью: лигноцериновую и нервоновую кислоты, а сфингомиелин серого вещества мозга содержит преимущественно стеариновую кислоту.
Синтез церамида и его производных
Катаболизм сфингомиелина и его нарушения
В лизосомах находятся ферменты, способные гидролизовать любые компоненты клеток. Эти ферменты называют кислыми гидролазами, так как они активны в кислой среде.
Регуляция липидного обмена
В условиях положительного калорийного баланса значительная часть потенциальной энергии пищевых продуктов запасается в виде энергии гликогена или жира. Во многих тканях даже при нормальном питании, не говоря уже о состояниях калорийного дефицита или голодания, окисляются преимущественно жирные кислоты, а не глюкоза. Причина этого — необходимость сохранения глюкозы для тех тканей (например, для мозга или эритроцитов), которые постоянно в ней нуждаются. Следовательно, регуляторные механизмы, часто с участием гормонов, должны обеспечивать постоянное снабжение всех тканей подходящим топливом в условиях как нормального питания, так и голодания. Сбой в этих механизмах происходит при гормональном дисбалансе (например, в условиях недостатка инсулина при диабете), при нарушении метаболизма в период интенсивной лактации (например, при кетозе крупного рогатого скота) или из-за усиления обменных процессов при беременности (например, при токсикозе беременности у овец). Такие состояния представляют собой патологические отклонения при синдроме голодания; он наблюдается при многих заболеваниях, сопровождающихся снижением аппетита.
Патологии липидного обмена
Тучность
Абеталипопротеинемия
Это относительно редкое генетическое заболевание характеризуется отсутствием в плазме β-липопротеидов плотности, меньшей чем 1,063 и связано с интенсивной демиелинизацией нервных волокон. Апо-В отсутствует в плазме, так же как и в хиломикронах, ЛПОНП и ЛПНП. Уровень триацилглицеринов и холестерина плазмы очень низок. Это свидетельствует о необходимости апо-В для нормального всасывания, синтеза и транспорта триацилглицеринов и холестерина из кишечника и печени. Липиды накапливаются в клетках слизистой оболочки кишечных ворсинок, при этом наблюдается акантоцитоз — сферическая деформация эритроцитов. Более 80% эритроцитов являются акантоцитами, или, как их иначе называют, зубчатыми эритроцитами (от греч. akantha — зубец, шип).
Кахексия
Недостаточное потребление калорий может привести и к полному исчезновению жировой ткани из подкожного и сальникового депо. Это может происходить при опухолях или хроническом инфекционном заболевании, при недостаточном питании или при метаболических нарушениях, таких, как диабет или увеличение щитовидной железы. В экспериментах было показано, что повреждение определенных областей гипоталамуса вызывает анорексию даже у предварительно голодавшего животного. Для анорексии, в происхождении которой имеет значение психогенный компонент, используют термин «anorexia nervosa» (нейрогенная анорексия).
В то время как потеря липидов тела при болезни щитовидной железы связана частично с избыточной мобилизацией резервных липидов, существенной причиной кахексии при голодании, недостаточности тиамина или диабете является сниженная способность организма синтезировать жирные кислоты из углеводных предшественников.
Атеросклероз
Атеросклероз (от греч. ἀθέρος — мякина, кашица + σκληρός — твёрдый, плотный) — хроническое заболевание артерий эластического и мышечно-эластического типа, возникающее вследствие нарушения липидного обмена и сопровождающееся отложением холестерина и некоторых фракций липопротеидов в интиме сосудов. Отложения формируются в виде атероматозных бляшек. Последующее разрастание в них соединительной ткани (склероз), и кальциноз стенки сосуда приводят к деформации и сужению просвета вплоть до облитерации (закупорки). Важно различать атеросклероз от артериосклероза Менкеберга, другой формы склеротических поражений артерий, для которой характерно отложение солей кальция в средней оболочке артерий, диффузность поражения (отсутствие бляшек), развитие аневризм (а не закупорки) сосудов. Атеросклероз сосудов ведет к развитию ишемической болезни сердца.
Молекулярные механизмы патогенеза атеросклероза
Источники
Таганович и др. Биологическая химия. — Минск: Высшая школа, 2013. — ISBN 978-985-06-2321-8.
См. также
24 ч3О дает следующую чистую реакцию:Эта реакция является обращением фотосинтетического процесса; он представляет собой сопряженную окислительно-восстановительную реакцию, в которой сахароза полностью окисляется до CO2, а кислород служит конечным акцептором электронов, восстанавливаясь до воды. Стандартное уменьшение свободной энергии для реакции, как написано, составляет 5760 кДж (1380 ккал) на моль (342 г) окисленной сахарозы. Контролируемое высвобождение этой свободной энергии, наряду с ее взаимодействием с синтезом АТФ, является основной, но никоим образом не единственной ролью респираторного метаболизма.
Чтобы предотвратить повреждение (сжигание) клеточных структур, клетка мобилизует большое количество свободной энергии, высвобождаемой при окислении сахарозы, в серии последовательных реакций. Эти реакции можно разделить на четыре основных процесса:
гликолиз, цикл лимонной кислоты, реакции пентозофосфатного пути и окислительное фосфорилирование. Субстраты дыхания входят в дыхательный процесс в разных точках путей, как показано на Рисунке 11.1:
• Гликолиз включает серию реакций, осуществляемых группой растворимых ферментов, расположенных как в цитозоле, так и в пластиде. Сахар, например сахароза, частично окисляется с помощью шестиуглеродных сахарных фосфатов (гексозофосфатов) и трехуглеродных сахарных фосфатов (триозофосфатов) с образованием органической кислоты, например пирувата. Этот процесс дает небольшое количество энергии в виде АТФ и снижает мощность в виде восстановленного пиридинового нуклеотида, НАДН.
• В пентозофосфатном пути, также расположенном как в цитозоле, так и в пластиде, шестиуглеродный глюкозо-6-фосфат первоначально окисляется до пятиуглеродного рибулозо-5-фосфата.Углерод теряется в виде CO2, и восстанавливающая способность сохраняется в форме двух молекул другого восстановленного пиридинового нуклеотида, НАДФН. В следующих реакциях, близких к равновесию, рибулозо-5-фосфат превращается в трех-семиуглеродные сахара.
• В цикле лимонной кислоты пируват полностью окисляется до CO2, и в процессе вырабатывается значительное количество восстанавливающей способности (16 эквивалентов НАДН + 4 эквивалента ФАДх3 на сахарозу). За одним исключением (сукцинатдегидрогеназа) в этих реакциях участвует ряд ферментов, расположенных во внутреннем водном отсеке или матриксе митохондрии (см. Рисунок 11.5). Как мы обсудим позже, сукцинатдегидрогеназа локализована во внутренней из двух митохондриальных мембран.
• При окислительном фосфорилировании электроны переносятся по цепи переноса электронов, состоящей из набора белков переноса электронов, связанных с внутренней из двух митохондриальных мембран. Эта система переносит электроны от НАДН (и родственных ему частиц), образующихся во время гликолиза, пентозофосфатного пути и цикла лимонной кислоты, к кислороду. Этот перенос электрона высвобождает большое количество свободной энергии, большая часть которой сохраняется за счет синтеза АТФ из АДФ и P; (неорганический фосфат), катализируемый ферментом АТФ-синтазой.В совокупности окислительно-восстановительные реакции цепи переноса электронов и синтез АТФ называются окислительным фосфорилированием. Этот заключительный этап завершает окисление сахарозы.
Никотинамидадениндинуклеотид (НАД + / НАДН) представляет собой органический кофактор (кофермент), связанный со многими ферментами, которые катализируют клеточные окислительно-восстановительные реакции. НАД + — это окисленная форма кофактора, которая подвергается обратимой двухэлектронной реакции, в результате которой образуется НАДН (рис. 11.2):
конх3
конх3
HH Hv.КОНх3
NAD (P) H
HCOH
HCOH
HCOH
h4C h4C
HCOH
HCOH
h4C h4C
О NH
ФАДх3
О NH
РИСУНОК 11.2. Структуры и реакции основных электрононесущих кофакторов, участвующих в респираторной биоэнергетике. (A) Восстановление NAD (P) + до NAD (P) H; (B) Снижение FAD до FADh3. FMN идентичен флавиновому компоненту FAD и показан в пунктирной рамке. Области, заштрихованные синим цветом, показывают части молекул, которые участвуют в окислительно-восстановительной реакции.
Стандартный восстановительный потенциал для этой окислительно-восстановительной пары составляет около -320 мВ, что делает ее относительно сильным восстановителем (то есть донором электронов). Таким образом, НАДН является хорошей молекулой, в которой сохраняется свободная энергия, переносимая электронами, высвобождаемыми во время ступенчатого окисления гликолиза и цикла лимонной кислоты. Родственное соединение, никотинамидадениндинуклеотидфосфат (НАДФ + / НАДФН), участвует в окислительно-восстановительных реакциях фотосинтеза (см. Главу 8) и окислительно-пентозофосфатном пути; он также принимает участие в митохондриальном метаболизме (M0ller and Ras-musson 1998).Об этом мы поговорим позже в этой главе.
Окисление НАДН кислородом через цепь переноса электронов высвобождает свободную энергию (220 кДж / моль, или 52 ккал / моль), которая стимулирует синтез АТФ. Теперь мы можем сформулировать более полную картину дыхания в связи с его ролью в энергетическом метаболизме клетки, объединив следующие две реакции:
Имейте в виду, что не весь углерод, попадающий в дыхательные пути, превращается в CO2. Многие респираторные промежуточные соединения являются отправными точками для путей ассимиляции азота в органическую форму, путей синтеза нуклеотидов и липидов и многих других (см.рис.11.13).
Была ли эта статья полезной?
Получите всю необходимую поддержку и руководство, чтобы добиться успеха в борьбе с зависимостями с помощью питания. Эта книга является одним из самых ценных ресурсов в мире, когда дело доходит до исчерпывающего руководства по освобождению от зависимости более разумным и здоровым путем.
Получите мою бесплатную электронную книгу
.
Структура и функции липидов | Примечания к редакции
биологии A-LevelСводка
- Липиды чаще всего представляют собой триглицериды, которые состоят из 3 жирных кислот и глицерина.
- Триглицериды образуются в результате реакции конденсации, а связь между глицерином и жирной кислотой называется сложноэфирной связью.
- Жирные кислоты могут быть насыщенными ( одинарные связи между всеми атомами углерода) или ненасыщенные, по крайней мере, одна двойная связь между атомами углерода. Это влияет на то, является ли соединение жиром или маслом.
- Липиды выполняют разнообразные функции в клетке, включая хранение энергии, создание клеточной мембраны и производство гормонов
Липиды состоят из элементов углерода, водорода и кислорода, похожи на углеводы, но содержат меньше воды. На самом деле липиды не растворяются в воде. Жиры представляют собой один из типов липидов. Липиды играют в клетках множество важных функций.
Наиболее распространенный тип липидов — триглицериды .Триглицериды состоят из 3 цепей жирных кислот , прикрепленных к основной цепи глицерина . Жирные кислоты представляют собой цепочки атомов углерода (от 14 до 22) с концевым углеродом, имеющим карбоксильную группу (COOH). Жирные кислоты в триглицериде могут быть одинаковыми или иметь разную структуру.
Глицерин имеет три атома углерода с присоединенными 3 молекулами ОН. Основная цепь глицерина присоединяется к трем жирным кислотам посредством реакции конденсации , поскольку образуются три молекулы воды.Связь, которая образуется между цепью жирной кислоты и глицерином, называется сложноэфирной связью .
Липидные структуры
Структура жирных кислот влияет на структуру липидов. В цепях жирных кислот атомы углерода могут иметь одинарных связей между собой, образуя липид « насыщенный ». При этом образуются жиры, которые обычно имеют твердую форму при комнатной температуре.
В качестве альтернативы, если одна или несколько связей между атомами углерода представляют собой двойных связей , липид называют « ненасыщенным ».Если имеется одна двойная связь, то триглицерид называется « мононенасыщенный », если он имеет несколько двойных связей, это « полиненасыщенный ». Ненасыщенные жирные кислоты обычно жидкие при комнатной температуре и называются маслами .
Двойные связи в ненасыщенных жирных кислотах могут существовать в конфигурации цис или транс . Это описывает, находится ли атом водорода на той же стороне ( цис ) или на противоположных сторонах ( транс ).Двойная цис-связь создает в молекуле изгиб , влияя на ее структуру и функцию ниже по течению. Трансжиры редки в природе.
Молекулы жира с полностью насыщенными хвостами могут плотно упаковать друг против друга, потому что одинарные связи приводят к прямым молекулам. В этой плотной упаковке образуются жиры твердые при комнатной температуре, например сливочное масло.
Ненасыщенные жирные кислоты (которые в природе обычно содержат двойные цис-связи) имеют загнутые хвосты.Это означает, что они не могут быть плотно упакованы, и в результате масла являются жидкими при комнатной температуре.
Функции липидов
В организме человека триглицеридов в основном хранятся в жировых клетках, называемых адипоцитами , которые образуют жировой ткани . Жировая ткань в основном используется в качестве накопителя энергии , но также помогает защитить и изолирует тело .Липиды выполняют в клетке множество функций.
Накопитель энергии — Распад триглицеридов дает больше энергии, чем расщепление углеводов, потому что все атомы углерода связаны с атомами водорода (и, следовательно, они имеют более высокую долю водорода по сравнению с атомами кислорода). Это означает, что они богаты электронами и могут способствовать выработке ацетил-КоА , который является важным коферментом в аэробном дыхании.
Биологические мембраны — Как обсуждалось ранее, клеточные мембраны в основном состоят из фосфолипидного бислоя .Фосфолипиды — это еще один тип липидов, образующийся, когда фосфатная группа заменяет одну из трех цепей жирных кислот. Фосфолипиды имеют гидрофобную часть и гидрофильную часть . Цепи жирных кислот остаются гидрофобными, образуя хвост молекулы, но добавление фосфатной группы к голове делает эту часть молекулы гидрофильной, то есть образуется двухслойный слой.
Производство гормонов — многие гормоны липидного происхождения, и они обычно относятся к классу гормонов, называемых стероидными гормонами .Эти гормоны обычно получают из холестерина и часто по своей структуре похожи на холестерин. Стероидные гормоны являются важными сигнальными молекулами, которые могут проникать в клетку непосредственно через клеточную мембрану и влиять на экспрессию генов и сигнальные пути. Примеры включают кортизол и тестостерон.
Дополнительная литература и ссылки:
[1]. https://tlamjs.com/2017/01/23/biological-molecules-lipids/ Изображение триглицерида
[2]. https: // химия.stackexchange.com/questions/60735/what-makes-trans-fats-more-harmful-than-saturation-ones Изображение насыщенное и ненасыщенное
[3]. https://www2.chemistry.msu.edu/faculty/reusch/VirtTxtJml/lipids.htm
[4]. https://www.britannica.com/science/lipid
[5]. https://www.springer.com/gb/book/9780412266201
.липидов | Определение, структура, примеры, функции, типы и факты
Липид , любое из разнообразных групп органических соединений, включая жиры, масла, гормоны и определенные компоненты мембран, которые сгруппированы вместе, потому что они не взаимодействуют в значительной степени с водой. Один тип липидов, триглицериды, в виде жира депонируется в жировых клетках, которые служат хранилищем энергии для организмов, а также обеспечивают теплоизоляцию. Некоторые липиды, такие как стероидные гормоны, служат химическими посредниками между клетками, тканями и органами, а другие передают сигналы между биохимическими системами внутри одной клетки.Мембраны клеток и органеллы (структуры внутри клеток) представляют собой микроскопически тонкие структуры, образованные из двух слоев молекул фосфолипидов. Мембраны служат для отделения отдельных клеток от окружающей их среды и для разделения внутренней части клетки на структуры, выполняющие особые функции. Эта функция разделения на части настолько важна, что мембраны и липиды, которые их образуют, должны были иметь важное значение для происхождения самой жизни.
липидная структура Структура и свойства двух типичных липидов.И стеариновая кислота (жирная кислота), и фосфатидилхолин (фосфолипид) состоят из химических групп, которые образуют полярные «головы» и неполярные «хвосты». Полярные головки гидрофильны или растворимы в воде, тогда как неполярные хвосты гидрофобны или нерастворимы в воде. Молекулы липидов этого состава спонтанно образуют агрегатные структуры, такие как мицеллы и липидные бислои, с их гидрофильными концами, ориентированными в сторону водной среды, а их гидрофобные концы защищены от воды. Британская энциклопедия, Inc.Популярные вопросы
Что такое липид?
Липид — это любое из различных органических соединений, нерастворимых в воде. Они включают жиры, воски, масла, гормоны и определенные компоненты мембран и действуют как молекулы-аккумуляторы энергии и химические посланники. Вместе с белками и углеводами липиды являются одним из основных структурных компонентов живых клеток.
Почему липиды важны?
Липиды представляют собой разнообразную группу соединений и выполняют множество различных функций.На клеточном уровне фосфолипиды и холестерин являются одними из основных компонентов мембран, отделяющих клетку от окружающей среды. Гормоны липидного происхождения, известные как стероидные гормоны, являются важными химическими посредниками и включают тестостерон и эстрогены. На уровне организма триглицериды, хранящиеся в жировых клетках, служат хранилищами энергии, а также обеспечивают теплоизоляцию.
Что такое липидные рафты?
Липидные рафты — это возможные области клеточной мембраны, которые содержат высокие концентрации холестерина и гликосфинголипидов.Существование липидных рафтов окончательно не установлено, хотя многие исследователи подозревают, что такие рафты действительно существуют и могут играть роль в текучести мембран, межклеточной коммуникации и заражении вирусами.
Вода — это биологическая среда, вещество, делающее жизнь возможной, и почти все молекулярные компоненты живых клеток, будь то животные, растения или микроорганизмы, растворимы в воде. Такие молекулы, как белки, нуклеиновые кислоты и углеводы, обладают сродством к воде и называются гидрофильными («водолюбивыми»).Липиды, однако, гидрофобны («боятся воды»). Некоторые липиды являются амфипатическими: часть их структуры гидрофильная, а другая часть, обычно большая часть, гидрофобная. Амфипатические липиды проявляют уникальное поведение в воде: они спонтанно образуют упорядоченные молекулярные агрегаты, гидрофильные концы которых находятся снаружи, в контакте с водой, а их гидрофобные части внутри, защищенные от воды. Это свойство играет ключевую роль в их роли как основных компонентов мембран клеток и органелл.
липид; oogonium Микрофотография оогониума (яйцеклетки некоторых водорослей и грибов), полученная с помощью просвечивающего электронного микроскопа в искусственных цветах, демонстрирующая обилие липидных капель (желтый), ядра (зеленый), атипичного ядрышка (темно-синий) и митохондрий ( красный). © Jlcalvo / Dreamstime.comХотя биологические липиды не являются крупными макромолекулярными полимерами (например, белками, нуклеиновыми кислотами и полисахаридами), многие из них образуются в результате химического связывания нескольких небольших составляющих молекул.Многие из этих молекулярных строительных блоков похожи или гомологичны по структуре. Гомологии позволяют разделить липиды на несколько основных групп: жирные кислоты, производные жирных кислот, холестерин и его производные и липопротеины. В этой статье рассматриваются основные группы и объясняется, как эти молекулы функционируют как молекулы-аккумуляторы, химические посредники и структурные компоненты клеток.
Жирные кислоты редко встречаются в природе в виде свободных молекул, но обычно находятся в составе многих сложных липидных молекул, таких как жиры (соединения, аккумулирующие энергию) и фосфолипиды (основные липидные компоненты клеточных мембран).В этом разделе описывается структура и физические и химические свойства жирных кислот. Он также объясняет, как живые организмы получают жирные кислоты как из своего рациона, так и в результате метаболического расщепления накопленных жиров.
Получите эксклюзивный доступ к контенту из нашего первого издания 1768 с вашей подпиской. Подпишитесь сегодняКонструкция
Биологические жирные кислоты, члены класса соединений, известных как карбоновые кислоты, состоят из углеводородной цепи с одной концевой карбоксильной группой (COOH).Фрагмент карбоновой кислоты, не включающий гидроксильную (ОН) группу, называется ацильной группой. В физиологических условиях воды эта кислотная группа обычно теряет ион водорода (H + ), образуя отрицательно заряженную карбоксилатную группу (COO — ). Большинство биологических жирных кислот содержат четное число атомов углерода, потому что путь биосинтеза, общий для всех организмов, включает химическое соединение двухуглеродных единиц вместе (хотя относительно небольшие количества нечетных жирных кислот встречаются у некоторых организмов).Хотя молекула в целом нерастворима в воде благодаря своей гидрофобной углеводородной цепи, отрицательно заряженный карбоксилат является гидрофильным. Эта обычная форма биологических липидов — та, которая содержит хорошо разделенные гидрофобные и гидрофильные части, — называется амфипатической.
Структурная формула стеариновой кислоты. Британская энциклопедия, Inc.Помимо углеводородов с прямой цепью, жирные кислоты могут также содержать пары атомов углерода, связанных одной или несколькими двойными связями, метильными разветвлениями или трехуглеродным циклопропановым кольцом около центра углеродной цепи.
.Химическое пищеварение | BioNinja
Понимание:
• Ферменты переваривают большинство макромолекул в пище до мономеров в тонком кишечнике
Пищу можно переваривать с помощью комбинации двух методов — механического переваривания и химического переваривания
- При химическом переваривании пища расщепляется под действием химических агентов (таких как ферменты, кислоты и желчь)
Кислоты желудка
- Желудок содержит желудочные железы, которые выделяют пищеварительные кислоты для создания среды с низким pH (pH ~ 2)
- Кислая среда функционирует, денатурируя белки и другие макромолекулы, способствуя их общему пищеварению
- В эпителии желудка содержится слизистая оболочка, которая предотвращает повреждение кислотами слизистой оболочки желудка
- Поджелудочная железа выделяет щелочные соединения (например,г. бикарбонат-ионы), которые нейтрализуют кислоты по мере их попадания в кишечник
Желчь
- Печень вырабатывает жидкость, называемую желчью, которая накапливается и концентрируется в желчном пузыре до попадания в кишечник
- Желчь содержит желчь соли, которые взаимодействуют с жировыми шариками и делят их на более мелкие капли (эмульгирование)
- Эмульгирование жиров увеличивает общую площадь поверхности, доступную для активности фермента (липаза)
Ферменты
- Ферменты — это биологические катализаторы, которые ускоряют скорость химической реакции (т.е.е. пищеварение) за счет снижения энергии активации
- Ферменты позволяют пищеварительным процессам протекать при температуре тела и с достаточной скоростью, необходимой для выживания
- Ферменты специфичны для субстрата и поэтому могут позволить перевариванию определенных молекул происходить независимо в разных местах
Примеры пищеварительных ферментов
Понимание:
• Поджелудочная железа выделяет ферменты в просвет тонкой кишки
Пищеварительные ферменты секретируются преимущественно поджелудочной железой, хотя другие органы также вносят свой вклад (слюнная железа, желудок)
- Тип секретируемого фермента и место его секреции зависят от конкретной макромолекулы, необходимой для гидролиза
Углеводы
- Переваривание углеводов начинается во рту с высвобождением амилазы из слюнных желез (амилаза = крахмал пищеварение)
- Амилаза также секретируется поджелудочной железой для продолжения переваривания углеводов в тонком кишечнике
- Ферменты для гидролиза дисахаридов часто иммобилизуются на эпителиальной выстилке тонкой кишки, рядом с белками каналов
- У людей нет , а не . фермент, способный переваривать целлюлозу ( целлюлаза ) и, следовательно, он проходит через организм непереваренным
Белки
- Переваривание белков начинается в желудке с высвобождения протеаз , которые оптимально функционируют при кислом pH ( е.г. пепсин = pH 2)
- Меньшие полипептидные цепи попадают в тонкий кишечник, где они расщепляются эндопептидазами , высвобождаемыми поджелудочной железой
- Эти эндопептидазы оптимально работают в нейтральной среде (pH ~ 7), поскольку поджелудочная железа нейтрализует кислоты в кишечнике
Липиды
- Распад липидов происходит в кишечнике, начиная с эмульгирования жировых шариков желчью, высвобождаемой из желчного пузыря
- Затем более мелкие жировые капли перевариваются липазами , высвобождаемыми из поджелудочной железы
Нуклеиновые кислоты
- Поджелудочная железа также выделяет нуклеаз , которые расщепляют нуклеиновые кислоты (ДНК, РНК) до более мелких нуклеозидов
Места ферментативного расщепления
.