Мышечные белки: Мышечные белки. «БИОЛОГИЧЕСКАЯ ХИМИЯ», Березов Т.Т., Коровкин Б.Ф.

Содержание

Мышечные белки. «БИОЛОГИЧЕСКАЯ ХИМИЯ», Березов Т.Т., Коровкин Б.Ф.

А.Я. Данилевский впервые разделил экстрагируемые из мышц белки на 3 класса: растворимые в воде, экстрагируемые 8–12 % раствором хлорида аммония и белки, извлекаемые разбавленными растворами кислот и щелочей. В настоящее время белки мышечной ткани делят на три основные группы: саркоплазматические, миофибриллярные и белки стромы. На долю первых приходится около 35%, вторых – 45% и третьих – 20% от всего количества мышечного белка. Эти группы белков резко отличаются друг от друга по растворимости в воде и солевых средах с различной ионной силой.

Белки, входящие в состав саркоплазмы, относятся к протеинам, растворимым в солевых средах с низкой ионной силой. Принятое ранее подразделение саркоплазматических белков на миоген, глобулин X, миоальбумин и белки-пигменты в значительной мере утратило смысл, поскольку существование глобулина X и миогена как индивидуальных белков в настоящее время отрицается. Установлено, что глобулин X представляет собой смесь различных белковых веществ со свойствами глобулинов. Термин «миоген» также является собирательным понятием. В частности, в состав белков группы миогена входит ряд протеинов, наделенных ферментативной активностью: например, ферменты гликолиза. К числу саркоплазмати-ческих белков относятся также дыхательный пигмент миоглобин и разнообразные белки-ферменты, локализованные главным образом в митохондриях и катализирующие процессы тканевого дыхания, окислительного фосфорилирования, а также многие стороны азотистого и липидного обмена. Недавно была открыта группа саркоплазматических белков – пар-вальбумины, которые способны связывать ионы Са

2+. Их физиологическая роль остается еще неясной.

К группе миофибриллярных белков относятся миозин, актин и актомио-зин – белки, растворимые в солевых средах с высокой ионной силой, и так называемые регуляторные белки: тропомиозин, тропонин, α- и β-актинин, образующие в мышце с актомиозином единый комплекс. Перечисленные миофибриллярные белки тесно связаны с сократительной функцией мышц.

Рис. 20.3. Строение молекулы миозина. Объяснение в тексте.

Миозин составляет 50–55% от сухой массы миофибрилл. Представление о миозине как о главном белке миофибрилл сложилось в результате работ А.Я. Данилевского, О. Фюрта, Э. Вебера и ряда других исследователей. Однако всеобщее внимание к миозину было привлечено лишь после опубликования работ В.А. Энгельгардта и М.Н. Любимовой (1939– 1942). В этих работах впервые было показано, что миозин обладает АТФазной активностью, т.е. способностью катализировать расщепление АТФ на АДФ и Н3РО4. Химическая энергия АТФ, освобождающаяся в ходе данной ферментативной реакции, превращается в механическую энергию сокращающейся мышцы. Молекулярная масса миозина скелетных мышц около 500000 (для миозина кролика 470000). Молекула миозина (рис. 20.3) имеет сильно вытянутую форму, длину 150 нм. Она может быть расщеплена без разрыва ковалентных связей на субъединицы: две тяжелые полипептидные цепи с мол. массой 205000–210000 и несколько коротких легких цепей, мол. масса которых около 20000. Тяжелые цепи образуют длинную закрученную α-спираль («хвост» молекулы), конец каждой тяжелой цепи совместно с легкими цепями создает глобулу («головка» молекулы), способную соединяться с актином. Эти «головки» выдаются из основного стержня молекулы. Легкие цепи, находящиеся в «головке» миозиновой молекулы и принимающие участие в проявлении АТФазной активности миозина, гетерогенны по своему составу. Количество легких цепей в молекуле миозина у различных видов животных и в разных типах мышц неодинаково.

Мышечные белки

Впервые А. Я. Данилевский (1881) разделил экстрагируемые из мышц белки на три класса: растворимые в воде, экстрагируемые 8 — 12% раствором хлорида аммо­ния и белки, извлекаемые разбавленными растворами кислот и щелочей. В настоящее время белки мышечной ткани делят на три основные группы: саркоплазматические белки, миофибриллярные белки, белки стромы. На долю первых приходится около 35%, вторых —45% и третьих-20% всего мышечного белка. Эти группы белков резко отличаются друг от друга по растворимости в воде и солевых средах с раз­личной ионной силой.

Белки, входящие в состав саркоплазмы, принадлежат к числу про­теинов, растворимых в солевых средах с низкой ионной силой.

К числу саркоплазмати­ческих белков относятся также дыхательный пигмент миоглобин и разнообразные белки-ферменты, локализованные главным образом в митохондриях и катализирую­щие процессы тканевого дыхания, окислительного фосфорилирования, а также многие стороны азотистого и липидного обменов. Недавно была открыта группа сарко­плазматических белков — парвальбумины, которые способны связывать ионы кальция.

К группе миофибриллярных белков относятся миозин, актин и актомиозин — белки, растворимые в солевых средах с высокой ионной силой, и так называемые регуляторные белки: тропомиозин, тропонин, α- и β-актинин, образующие в мышце с актомиозином единый комплекс. Перечисленные миофибриллярные белки тесно связаны с сократительной функцией мышц.

Миозин составляет 50-55% от сухой массы миофибрилл. Миозин обладает АТФазной активностью, т. е. способностью катализировать расщеп­ление АТФ на АДФ и Н3РО4. Химическая энергия АТФ, освобождающаяся в ходе данной ферментативной реакции, превращается в механическую энергию сокращаю­щейся мышцы. Молекула миозина имеет сильно вытянутую форму, длину 150 нм. Она может быть расщеплена без разрыва ковалентных связей на субъединицы: две тяжелые полипептидные цепи и несколько коротких легких цепей. Тяжелые цепи образуют длинную закрученную α-спираль («хвост» молекулы), конец каждой тяжелой цепи совместно с легкими цепями создает глобулу («головку» молекулы), способную соединяться с актином. Эти головки выдаются из основного стержня молекулы.

Толстые нити (толстые миофиламенты) в саркомере получены путем соединения большого ппчисла определенным образом ориентированных в ппппппппппппппппппппппппппппппппппппространстве молекул миозина.

Актин, составляющий ~20% от сухой массы миофибрилл. Известны две формы актина: глобулярный (Г-актин) и фибриллярный (Ф-актин) актин. Молекула Г-актина состоит из одной полипептидной цепочки, в образовании которой принимают участие 374 аминокислотных остатка. Ф-актин является продуктом поли­меризации Г-актина и имеет структуру двухцепочечной спирали.

Актомиозин образуется при соединении миозина с Ф-актином. Актомиозин, как обладает АТФазной активностью. Однако АТФазная активность актомиозина отличается от АТФазной активности миозина. Фермент актомиозин активируется ионами магния и ингибируется этилен-диаминтетраацетатом (ЭДТА) и высокой концентрацией АТФ, тогда как миозиновая АТФаза ингибируется ионами Mg2+, активируется ЭДТА и не ингибируется высокой концентрацией АТФ. Оптимальные значения рН для обоих ферментов также различны.

Тропомиозин был открыт К. Бейли в 1946 г. Молекула тропомиозина состоит из двух α-спиралей и имеет вид стержня. На долю тропомиозина приходится около 4 — 7% всех белков миофибрилл.

Т

Структура тонкого филамента.

1 — актин; 2 — тропомиозин; 3 — тропонин С;

4 — тропонин

I; 5 — тропонин Т

ропонин — глобулярный белок, открытый С. Эбаси в 1963 г. В скелетных мышцах взрослых животных и человека тропонин (Тн) составляет лишь около 2% от всех миофибриллярных белков. В его состав входят три субъединицы (Тн-I, Тн-С, Тн-Т). Тн-I (ингибирующий) может ингибировать АТФазную активность, Тн-С (кальцийсвязывающий) обладает значительным сродством к ионам кальция, Тн-Т (тропомиозинсвязывающий) обеспечивает связь с тропомиозином. Тропонин, соединяясь с тропомиозином, образует комплекс, назван­ный нативным тропомиозином. Этот комплекс прикрепляется к актиновым филаментам и придает актомиозину скелетных мышц позвоночных чувствительность к ионам кальция.

Белки стромы в поперечнополосатой мускулатуре представлены в основном коллагеном и эластином.

Небелковые азотистые экстрактивные вещества

В скелетных мышцах содержится ряд важных азотистых экстрактивных веществ: адениновые нуклеотиды (АТФ, АДФ и АМФ), нуклеотиды неаденинового ряда, креатин-фосфат, креатин, креатинин, карнозин, ансерин, свободные аминокислоты и др.

На долю креатина и креатинфосфата приходится до 60% небелкового азота мышц. Креатинфосфат и креатин относятся к тем азотистым экстрактивным веществам мышц, которые участвуют в химических процессах, свя­занных с мышечным сокращением.

К числу азотистых веществ мышечной ткани принадлежат и имидазолсодержащие дипептиды — карнозин и ансерин.

Карнозин и ансерин — специфические азотистые вещества скелетной мускулатуры позвоночных — увеличивают амплитуду мышечного сокращения, предварительно сни­женную утомлением. Имидазолсодержащие дипептиды не влияют непосредственно на сократительный аппарат, но увеличивают эффективность работы ионных насосов мышечной клетки.

Среди свободных аминокислот в мышцах наиболее высокую концентрацию имеет глутаминовая кислота (до 1,2 г/кг) и ее амид — глутамин (0,8-1,0 г/кг). В состав различных клеточных мембран мышечной ткани входит ряд фосфоглицеридов: фосфатидилхолин, фосфатидилэтаноламин, фосфатидилсерин и др. Другие азотсодержащие вещества: мочевина, мочевая кислота, аденин, гуанин, ксантин и гипоксантин — встречаются в мышечной ткани в неболь­шом количестве.

Функциональные свойства мышечных белков / Статьи

В продуктах из мяса птицы белки выполняют множество различных функций. Свойства, характерные для определенных изделий, в частности выход, качество и органолептические показатели, зависят от успешного использования функциональных свойств белков в процессе переработки.

Под функциональными свойствами понимают физические и химические свойства белков, которые определяют их поведение в пищевых продуктах в процессе переработки, хранения и потребления. Они зависят от молекулярного строения и биохимических особенностей белка. Функциональные свойства белков оказывают влияние на многие показатели качества и органолептические характеристики продукта, ощущаемые и воспринимаемые потребителем. Понимание особенностей белков птицы, их свойств и функций необходимо для эффективного использования ингредиентов, разработки новых и модификации существующих продуктов, снижения количества отходов и контроля потребления энергии в ходе технологического процесса. Наиболее важные для конечного продукта функциональные свойства можно классифицировать на три общие категории:

    * взаимодействия белок-вода;
    * взаимодействия белок-жир;
    * взаимодействия белок-белок.

Важность какого-либо функционального свойства может меняться в зависимости от вида продукта, мясного сырья, вида и концентрации немясных добавок, используемого технологического оборудования, условий и степени переработки. Функциональные свойства мышечных белков зависят от содержания в рецептуре других ингредиентов и от условий переработки. Любые их изменения в рецептуре продукта или технологическом процессе требуют оценки возможного влияния этих изменений на структуру мышечных белков. Например, изменения в рецептуре могут повлиять на pH, концентрацию соли и белка в продукте, что наряду с другими факторами вызывает изменение биохимических, а следовательно и функциональных свойств мышечных белков. Изменения условий переработки, особенно температуры продукта или степени измельчения, также могут повлиять на биохимические свойства белков. Все это отражается на их структуре и, следовательно, оказывает непосредственное влияние на качество конечного продукта. Зачастую потребность в определенном функциональном свойстве изменяется в процессе переработки. Так, растворимость, способность к связыванию воды и жира являются наиболее важными функциональными свойствами сырых продуктов из мяса птицы. Способность к удержанию воды и жира и к гелеобразованию крайне важны для мясных продуктов в процессе термообработки. Чаще всего необходима многофункциональность белков, то есть предполагается, что любой белок проявляет не одно, а несколько функциональных свойств либо одновременно, либо последовательно в процессе переработки.

Мышечные белки

Мясо птицы содержит примерно 20-23% белков. Мышечные белки по их растворимости можно разделить на три группы: миофибриллярные, саркоплазматические и белки стромы.

Таблица 1. Белки скелетных мышц птицы
I
Миофибриллярные белки (55% от общего количества белков)
Сократительные белки

Пример: миозин, актин

Регуляторные белки
Пример: тропомиозин, тропонин

Цитоскелетные белки
Пример: тайтин, небулин

II
    
Саркоплазматические белки (35% от общего количества белков)

Гликолитические ферменты
Митохондриальные и окислительные ферменты

Лизосомальные ферменты
Миоглобин и другие гемовые ферменты

III
    
Белки стромы (3-5% от общего количества белков)
Коллаген
Эластин
Ретикулин

Миофибриллярные, или солерастворимые белки нерастворимы в воде, но большинство растворяется в растворах поваренной соли концентрацией более 1%. Эта группа состоит примерно из 20 отдельных белков, входящих в состав миофибрилл сократительной мышцы. Миофибриллярные белки могут быть разделены на три группы в зависимости от выполняемой функции: сократительные, которые ответственны за мышечные сокращения, регуляторные, участвующие в управлении процессом сокращения, и цитоскелетные, скрепляющие миофибриллы и способствующие сохранению их структурной целостности.

Сократительные белки миозин и актин оказывают большое влияние на функциональность мышечного белка. Поскольку в окоченевшей мышце актин и миозин находятся в виде актомиозинового комплекса, изменяется функциональность миозина как в эмульгированных, так и в формованных продуктах из мяса птицы. Свойства продуктов зависят также от общего соотношения актина и миозина и соотношения миозина и актина в свободном состоянии. Саркоплазматические белки и белки стромы, в свою очередь, влияют на функциональные свойства миофибриллярных белков.

Саркоплазматические белки растворимы в воде или в растворах с малой ионной силой (

Белки стромы, часто называемые белками соединительной ткани, служат каркасом, поддерживающим структуру мышцы. Основным белком стромы является коллаген. Эластин и ретикулин составляют небольшую часть стромы. Все эти белки нерастворимы в воде и солевых растворах. Нежность мяса, как правило, уменьшается с увеличением возраста животных благодаря образованию поперечных связей и другим изменениям коллагена.

Кожа птицы является основным источником коллагена в рецептурах продуктов из мяса птицы. Хотя этот вид сырья обычно используют в качестве источника жира, его добавление приводит к увеличению содержания коллагена. При высоких концентрациях в рецептурах коллаген может оказывать влияние на функциональные свойства миофибриллярных белков. Он способен вызвать уменьшение размеров (усадку) продуктов из измельченного мяса, особенно при высокотемпературной обработке, а также влиять на связывание кусков мяса в формованных продуктах.

Роль белков в эмульгированных и формованных продуктах

При изготовлении эмульгированных продуктов из мяса птицы мясо, вода, соль, фосфаты и другие ингредиенты измельчают или перемалывают до образования пастообразной массы – мясной эмульсии. Эмульсией заполняют оболочку желаемой формы и подвергают термообработке.

Мясная эмульсия представляет собой сложную систему, состоящую из гидратированных мышечных белков, мышечных волокон, фрагментов миофибрилл, жировых клеток, капель жира, воды, соли, фосфатов и других компонентов. Эмульгированные продукты, такие как сосиски, копченые и вареные колбасы, содержат примерно 17-20% белка, 0-20% жира и 60-80% воды. Таким образом, относительно небольшое количество белка должно связать достаточно большое количество воды и жира. В рецептурах мясных продуктов для экстракции и гидратации миофибриллярных белков используется обычно 1,5-2,0% соли.

В процессе эмульгирования происходит измельчение мышечной ткани, то есть ее физическое разрушение путем повреждения сарколеммы (оболочки мышечной клетки) и внутренней сети из соединительной ткани. В присутствии соли мышечные волокна набухают, миофибриллы разделяются на более короткие части, миофибриллярные белки экстрагируются и гидратируются. Эти явления приводят к образованию вязкой пастообразной массы, которая удерживает воду и стабилизирует жир. Под воздействием тепловой обработки экстрагированные и гидратированные мышечные белки эмульсии образуют поперечно-связанную матрицу геля, которая удерживает внутри себя воду и жир, а также формирует текстуру, характерную для готовых эмульгированных продуктов.

Формованные продукты из птицы изготавливают из ломтиков или кусков мяса, связанных или склеенных друг с другом. Рулеты из мяса грудок индейки и куриное мясо ломтями (chickencoldcuts) являются типичными примерами таких продуктов. При производстве эмульгированных и формованных продуктов происходят одни и те же явления. Главное различие заключается в том, что при производстве формованных продуктов большинство изменений происходит на поверхности кусков мяса. Для разрушения мышечных клеток, расщепления мышечных волокон и извлечения миофибриллярных белков с поверхности кусков мяса применяют тумблирование, массирование или перемешивание в присутствии соли. На поверхности кусков мяса при этом образуется склеивающий слой из выделившихся миофибриллярных белков. При тепловой обработке этот белковый раствор превращается в гель, который действует подобно клею и удерживает куски мяса вместе. Считается, что наибольший вклад в скрепляющую способность белкового раствора вносит миофибриллярный белок миозин. Было установлено, что в присутствие коллагена на поверхности снижает сцепление между кусками мяса.

Взаимодействие белок-вода

В целом все функциональные свойства белков зависят от их взаимодействия с водой. Однако три свойства, зависящие от взаимодействия белок-вода, особенно важны для сырых продуктов из мяса птицы: извлечение (экстракция) и гидратация белков, влагоудерживающая способность, вязкость.

Термин «экстрагируемость» используется для описания того количества белка, которое освобождается или извлекается из миофибриллярной структуры в процессе обработки. При определенных внешних условиях экстрагированный мышечный белок растворим в водной фазе. Растворимость непосредственно зависит от распределения гидрофильных и гидрофобных аминокислот на поверхности молекул белка и термодинамики взаимодействий белок-вода. Экстрагируемость и растворимость мышечных белков зависят от рН, концентрации соли, вида солей и температуры.

Влагоудерживающая способность, как следует из названия, характеризует способность белкового матрикса удерживать влагу или абсорбировать добавленную воду при внешних воздействиях, таких как варка, центрифугирование и прессование. Вода может быть химически связана с белком, удерживаться за счет капиллярных сил или быть физически заключенной внутри белковой структуры. В высокоорганизованной миофибриллярной структуре белки химически связывают воду. Кроме того, вода удерживается физически в пространстве между волокнами. Влагоудерживающая способность также зависит от рН, от концентрации и вида присутствующей соли и температуры.

Вязкость, которая определяется в реологии как сопротивление течению, оказывает сильное влияние на стабильность сырого продукта перед тепловой обработкой. Вязкость мясного фарша увеличивается в процессе измельчения (куттерования), которое сопровождается набуханием мышечных волокон и абсорбцией ими воды. Экстрагированные белки, особенно крупные фибриллярные и хорошо растворимые, например миозин, могут увеличить вязкость растворов даже при очень малой концентрации. Вязкость фарша, с одной стороны, должна быть достаточно большой для обеспечения устойчивости сырого продукта, с другой стороны, не должна затруднять процессы перекачки и промежуточного накопления продукта на предприятии.

Добавление соли уменьшает электростатические взаимодействия между молекулами белка, что способствует увеличению экстрагируемости, растворимости и влагосвязывающей способности. Измельчение, или тумблирование мяса в присутствии соли приводит к разрушению мышечной ткани, способствует поглощению воды и набуханию мышечных волокон и в результате к увеличению вязкости мясного фарша. Вследствие солюбилизации и экстракции миофибриллярных белков происходит также разрушение структуры тонких и толстых нитей саркомера. Отдельные миофибриллы высвобождаются из мышечных волокон и дробятся на более короткие части. Экстрагированные белки, особенно миозин, также связывают воду и увеличивают вязкость фарша из мяса птицы, что способствует повышению устойчивости диспергированного жира. По этой причине в большинстве рецептур продуктов из мяса птицы дозировка соли составляет примерно 1,5-2,0%. Более высокая концентрация соли может увеличить влагоудерживающую способность фарша, однако это приводит к излишне соленому вкусу продукта.

На экстрагируемость, растворимость и влагоудерживающую способность мышечных белков влияет также рН фарша. В производстве продуктов из мяса птицы широко используются щелочные фосфаты, позволяющие повышать рН мясного фарша на 0,1-0,4 единиц рН, что приводит к увеличению влагосвязывающей способности мышечных белков.

В процессе переработки необходимо тщательно контролировать продолжительность и температуру измельчения для эмульсионных продуктов и тумблирования – для формованных продуктов. Избыточное измельчение или тумблирование могут привести к денатурации белка, а также к избыточному разрушению мышечных волокон и уменьшению вязкости фарша, что сопровождается снижением качества пространственной структуры белкового геля после тепловой обработки. Параметры измельчения и тумблирования должны быть подобраны таким образом, чтобы максимально увеличить степень экстракции белка, избегая при этом его денатурации.

Взаимодействие белок-жир

В грубо измельченных продуктах, таких как формованные продукты и многие колбасы, жир в основном сохраняется внутри неповрежденных жировых клеток. При их изготовлении обычно не возникает проблем, связанных с отделением жира в процессе переработки и тепловой обработки, так как он заключен внутри клеточных оболочек. Вязкость фарша и неповрежденные оболочки жировых клеток препятствуют появлению проблем, связанных с недостаточной связанностью жира.

В тонкоизмельченных эмульгированных продуктах, таких как колбасы и сосиски, жировые клетки разрушены, и жир находится в виде капель, образуя одну из фаз в эмульсиях. В эмульгированных продуктах капли жира образуют дисперсионную фазу, а непрерывная фаза состоит из воды, белков и солей. Для образования эмульсии необходима энергия, которая передается фаршу в процессе измельчения. Как правило, чем больше подводится энергии, тем меньше по размеру и многочисленнее образующиеся капли жира дисперсионной фазы фарша.

При высоких температурах и при достаточно большом поступлении энергии мембраны жировых клеток разрушаются, твердый жир плавится и эмульгируется, образуя жидкие капли. Основная часть жира птицы начинает плавиться при 13 °C, однако вследствие сложного липидного состава он плавится полностью лишь около 33 °С.

Капли жидкого жира нестабильны и со временем легко коалесцируют – маленькие жировые капли объединяются в крупные. Процесс этот крайне нежелателен, поскольку приводит к ряду дефектов качества эмульгированных продуктов. При достаточно низкой температуре жировые частицы могут находиться в частично кристаллизованном состоянии, и вероятность коалесценции в этом случае уменьшается.

Капли жидкого жира в тонкоизмельченных эмульгированных продуктах необходимо стабилизировать, чтобы избежать нежелательных изменений при переработке, перекачке и тепловой обработке. Этого можно достичь двумя способами. Во-первых, коалесценции препятствует высокая вязкость фарша. Во-вторых, наличие вокруг жировых капель белковой оболочки уменьшает межфазовое поверхностное натяжение между жиром и водой (то есть между диспергированной и непрерывной фазами) и стабилизирует капли.

Концентрация белка должна быть достаточно высокой, чтобы его молекулы могли взаимодействовать друг с другом и образовывать устойчивую непрерывную пленку на поверхности жировой капли. Общее количество растворимого белка также должно быть большим, чтобы образовать оболочки вокруг всех жировых капель. Существует еще одна причина возможной нестабильности тонкоизмельченных эмульгированных продуктов – мелкие жировые капли имеют большую площадь поверхности и для образования вокруг них стабильной белковой оболочки необходимо большее количество гидратированного белка. Миозин является главным компонентом оболочки, окружающей жировые капли, и считается, что он играет ключевую роль для обеспечения устойчивости жировых капель в процессе хранения и на ранних стадиях тепловой обработки.

Взаимодействие белок-белок

В процессе тепловой обработки взаимодействие молекул белка друг с другом приводит к формированию матрикса из белкового геля. Белковый гель образуется при нагревании в результате разворачивания и агрегирования мышечных белков, образующих прочную непрерывную поперечно связанную пространственную сеть, или матрикс. Образование непрерывной структуры белкового геля существенно влияет на текстурные и органолептические свойства, а также на выход продуктов из мяса птицы при тепловой обработке. Миофибриллярные белки образуют гель при термообработке как эмульгированных, так и формованных продуктов, и, по-видимому, гелеобразование является наиболее важным для готовых мясных продуктов, подвергаемых тепловой обработке, функциональным свойством белков. Однако на способность миофибриллярных белков образовывать прочный гель могут влиять саркоплазматические белки и соединительная ткань.

Миофибриллярные белки образуют термически необратимые гели. Это означает, что поперечная сшивка за счет химических связей, образующихся между белками в процессе нагрева, практически не изменяется при охлаждении или повторном нагреве.

Белковые гели удерживают в сетчатой структуре большое количество воды, связанной как в результате химических реакций, так и механически захваченной в ячейки. Матрикс белкового геля физически предотвращает коалесценцию жира в термообработанном мясном фарше. Под воздействием нагревания образуются также поперечные связи между белковой пленкой, окружающей жировую каплю, и непрерывным матриксом белкового геля.

В зависимости от рН и концентрации соли могут образовываться гели со структурой разного типа, что обуславливает получение продуктов с разными текстурными и влагоудерживающими свойствами. Как правило, при рН от 6 до 6,5 получаются эмульгированные продукты с максимально прочной текстурой и приемлемой упругостью. При более низких значениях рН, близких к pIмышечных белков, получаются гели с мягкой текстурой и слабой влагоудерживающей способностью, так как белки переходят в нерастворимое состояние и сильно агрегируются.

В общем случае миофибриллярные белки птицы начинают денатурировать при температуре примерно 40 °С, точка их гелеобразования достигается при температуре около 55 °С. Прочность геля и влагоудерживающая способность в процессе тепловой обработки повышаются до температуры 65-70 °С. Нагревание свыше 70 °С зачастую плохо влияет на качество гомогенизированных продуктов вследствие избыточной агрегации белка внутри сетки геля, что приводит к синерезису – отделению воды из продукта. Причиной синерезиса и выделения влаги при температурах свыше 70 °С может также быть желатинизация белка стромы – коллагена. На структуру образующегося геля и соответственно на качество готовых продуктов из мяса птицы может также влиять скорость нагрева. Считается, что при низкой скорости формируются гели с более упорядоченной структурой и соответственно с большей влагоудерживающей способностью. Например, для образования структуры белкового геля с высокой влагоудерживающей способностью сосиски с низким содержанием жира следует прогревать с меньшей скоростью, чем такой же продукт, содержащий больше жира.

Модельные системы в исследовании функциональных свойств белка

С увеличением ассортимента продуктов из мяса птицы все большую важность приобретает необходимость изменения и контроля функциональных свойств белка. Изучение этих свойств может привести к более глубокому пониманию изменений, происходящих в процессе изготовления и термообработки эмульгированных и формованных продуктов из мяса птицы. Целенаправленная модификация функциональных свойств белков может применяться в целях использования более дешевых или нетрадиционных источников мясного сырья, улучшения качества существующих продуктов и более эффективного использования немясных компонентов. Кроме того, изменение функциональных свойств белков мяса птицы позволяет снизить энергетические и технологические затраты, а также количество отходов производства.

Для исследования функциональных свойств белков мяса птицы было разработано множество различных модельных систем. Наиболее простым решением является использование определенной мышцы в тонкоизмельченном виде. Однако в такой системе зачастую бывает очень сложно выявить действительные причины и следствия из-за огромного количества составных частей и возможных взаимодействий. Поэтому в целях ограничения числа ингредиентов и снижения уровня сложности применяются более простые. Так, для установления функций белков в продуктах из мяса птицы использовались модельные системы на основе фракционированных белков, включающих в себя миофибриллы, миофибриллярные белки, солерастворимые белки, актомиозин и даже миозин.

Так как состав белков в конкретной фракции зависит от способа подготовки, то зачастую сложно сравнивать результаты, полученные в разных исследованиях модельных систем. Например, фракция солерастворимых белков состоит из смеси 15 и более белков, взаимодействующих при нагревании. Известно, что состав солерастворимой фракции может меняться в зависимости от условий экстракции и исходного материала. Таким образом, разные количества общего миозина или различное соотношение актина и миозина в солерастворимой фракции могут влиять на получаемые результаты исследований. С учетом этих факторов выбор испытательной системы следует осуществлять с особой тщательностью. При проведении исследований по разработке продукта наилучшее решение – работать с реальным продуктом или выбрать систему, как можно более близкую к нему. При проведении более фундаментальных исследований лучше начинать с упрощенной системы, например с чистого миозина, а затем переходить к более сложным, что позволит проверить, сохраняются ли закономерности, установленные для простой системы, при добавлении других компонентов.

Белки мышечной стромы — Справочник химика 21

    При экстрагировании измельченных мышц 0,6 М раствором КС1 и при дальнейшем диализе экстракта выпадает в осадок белковая фракция, получившая название миозин. Миозиновая фракция белков входит в состав фибрилл мышечных волокон, являющихся сократительной структурой мышц, поэтому миозин называют сократительным белком мышц (правильнее было бы его назвать фракцией сократительных белков мышц). После извлечения измельченных мышц 0,6 М раствором КС1 остается еще белковый осадок, состоящий из белков мышечной стромы. Данные о содержании различных белковых фракций в мышцах высших животных приводятся ниже  [c.542]
    Сердечная мышца по содержанию ряда химических соединений занимает промежуточное положение между скелетной мускулатурой и гладкими мышцами. Так, общее содержание белкового азота в скелетных мышцах кролика составляет 30—31 мг/г, а в гладкой мускулатуре (миометрий)—до 20,3 мг/г. В сердечной мышце и особенно в гладких мышцах значительно меньше миофибриллярных белков, чем в скелетной мышце. Общее содержание миофибриллярных белков в гладкой мышечной ткани желудка примерно в 2 раза ниже, чем в скелетных мышцах. Концентрация белков стромы в гладких мышцах и миокарде выше, чем в скелетной мускулатуре. Известно, что миозин, тропомиозин и тропонин сердечной мышцы и гладкой мускулатуры заметно отличаются по своим физико-химическим свойствам от соответствующих белков скелетной мускулатуры. Отмечены определенные особенности и во фракциях саркоплазматических белков. Саркоплазма гладкой мускулатуры и миокарда в процентном отношении содержит больше миоальбумина, чем саркоплазма скелетной мускулатуры. 
[c.652]

    А.Я. Данилевский впервые разделил экстрагируемые из мышц белки на 3 класса растворимые в воде, экстрагируемые 8—12 % раствором хлорида аммония и белки, извлекаемые разбавленными растворами кислот и щелочей. В настоящее время белки мышечной ткани делят на три основные группы саркоплазматические, миофибриллярные и белки стромы. На долю первых приходится около 35%, вторых—45% и третьих—20% от всего количества мышечного белка. Эти группы белков резко отличаются друг от друга по растворимости в воде и солевых средах с различной ионной силой. [c.648]

    Белки мышечной стромы в скелетной мышце представлены в основном коллагеном и эластином, которые входят в состав сарколеммы и 2-линий миофибрилл. Эти белки обладают эластичностью, большой упругостью, что имеет существенное значение для процесса сокращения и расслабления мышцы. Их строение рассмотрено в главе 12. [c.299]

    Другие мышечные белки. Глобулин X, а также белки мышечной стромы, за исключением актина, остаются еще мало изученными. Все еще неизвестна роль их в сокращении мышц. [c.544]

    Белки стромы в поперечно-полосатой мускулатуре представлены в основном коллагеном и эластином. Известно, что строма скелетных мышц, остающаяся после исчерпывающей экстракции мышечной кашицы солевыми растворами с высокой ионной силой, состоит в значительной мере из соединительнотканных элементов стенок сосудов и нервов, а также сарколеммы и некоторых других структур. [c.650]


    Эмбриональная мышечная ткань по своему химическому составу значительно отличается от скелетной мускулатуры взрослых особей. В мышцах эмбрионов больше воды, чем в функционально зрелой мускулатуре. Соответственно общее содержание белка в мышечной ткани эмбрионов в пересчете на сырую ткань оказывается более низким, чем в мышцах животных того же вида в постнатальном периоде развития. По сравнению с мышцами взрослого организма в функционально незрелой мышце ниже содержание миофибриллярных белков (миозина и актомиозина) и выше—белков стромы, миоальбумина, а также глобулинов. По мере развития плода количество миофибриллярных белков увеличивается и возрастает АТФазная активность в мышечных экстрактах. [c.653]

    Содержание АТФ и креатинфосфата в клетке резко снижается в результате нарушения окислительного фосфорилирования в митохондриях. Одно из первых проявлений этого состояния—нарушение мембранной проницаемости. Нарушение целостности мембран способствует выходу из клетки ионов, в том числе ионов К, а также ферментов. Дефицит энергетических ресурсов и нарушение ионного состава, существенные изменения различных мембранных резервуаров , обеспечивающих контроль за уровнем внутриклеточного кальция, обусловливают торможение функциональной активности мышечных клеток и их постепенную гибель. В этот же период выявляются изменения состава белков миокарда (резкое снижение содержания миофибриллярных белков и накопление белков стромы). Нарушение обмена углеводов, белков и липидов (свободные жирные кислоты не окисляются, а преимущественно включаются в триглицериды) при инфаркте миокарда находит отражение в жировой инфильтрации сердечной мышцы. [c.660]

    Среди белков мышечной ткани выделяют три основные группы саркоплаз-матические белки, на долю которых приходится около 35 %, миофибрил-лярные белки, составляюш,ие около 45 %, и белки стромы, количество которых достигает 20 %. [c.296]

    V. В солевом экстракте мышцы открыть присутствие белка (миозина или актомиозина). Установить границы высаливан я миозина (см. работу 148), осаждаемость миозина при диализе солевого экстракта и при разведении его водой, установить границы высаливания хлористым натром. Проделать с раствором миозина цветные реакции на белковые аминокислоты. Остаток ткани после извлечения солевым раствором содержит белки стромы мышечного волокна и белки соединительной ткани. [c.237]

    Особенно характерным в этих случаях является резкое снижение содержания в мышцах миозина и актомиозина, возрастание количества белков стромы и некоторых саркоплазматических белков, в том числе миоальбумина. Степень этих изменений соответствует тяжести клинической картины заболевания. Помимо изменения фракционного состава белков мышц, при указанных патологических состояниях наблюдается снижение концентрации в мышечной ткани АТФ и фосфокреатина, снижение АТФ-азной активности контрактильных белков, снижение содержания дипептидов—карнозина и ансерина и т. д. [c.455]


Мышечные белки — Справочник химика 21

    Механическая прочность мясных изделий обусловлена опре. деленной жесткостью третичной структуры белков. Наибольшей жесткостью обладают белки соединительных тканей (коллаген и эластин). Одним из основных, но не единственным фактором обусловливающим жесткость третичной структуры большинства белков животного происхождения за исключением яиц и икры является присутствие в них воды (в форме прочносвязанной гидратной и др., которые здесь не рассматриваются). В мясных продуктах вода в третичной структуре белка связана главным образом с мышечными белками, а не с соединительнотканными. Содержание соединительнотканных белков зависит от характера сырья, возраста животного и ряда других условий. В среднем, меньше всего их в рыбе ( —4 %), затем в молодых птицах и свинине (до 8 %), больше всего (8— 5 %) в убойном мясе говядины и баранины. Тепловая обработка животных продуктов и заключается в частичном разрушении соединительнотканных, а также мышечных белков. Разрушение происходит за счет воды, участвующей в образовании третичной структуры мышечных белков (практически вода в мясе связана главным образом с этими белками) и освобождающейся при их температурной коагуляции. При тепловой обработке высвобожденная вода внедряется непосредственно во вторичную структуру белков (главным образом коллагена), разрушая их и приводя соединительнотканные белки в желатинообразное состояние. Эту фазу часто рассматривают как образование из коллагена глютина. Механическая прочность мясных продуктов при этом заметно уменьшается. Температурная коагуляция белков в зависимости и от их природы начинается с 60 °, но в большинстве случаев с 70 С. При варке и жарке мяса температура внутри изделия в зависимости от вида мяса и величины куска обычно достигает 75—95 С. [c.184]
    Взяв за основу происхождение организма, различают растительные, животные, вирусные и бактериальные белки, в то же время учитывая органы и клеточные органеллы — белки плазмы, мышечные белки, белки молока, яиц, рибосомные белки, белки клеточного ядра, микросом и мембран. [c.344]

    Синтез незаменимых аминокислот из продуктов обмена углеводов и жиров в организме животных отсутствует. Клетки животных не содержат ферментных систем, катализирующих синтез углеродных скелетов этих аминокислот. В то же время организм может нормально развиваться исключительно при белковом питании, что также свидетельствует о возможности синтеза углеводов из белков. Процесс синтеза углеводов из аминокислот получил название глюконеогенеза. Он доказан прямым путем в опытах на животных с экспериментальным диабетом более 50% введенного белка превращается в глюкозу. Как известно, при диабете организм теряет способность утилизировать глюкозу, и энергетические потребности покрываются за счет окисления аминокислот и жирных кислот. Доказано также, что исходными субстратами для глюконеогенеза являются те аминокислоты, распад которых сопровождается образованием прямо или опосредованно пировиноградной кислоты (например, аланин, серин, треонин и цистеин). Более того, имеются доказательства существования в организме своеобразного циклического процесса—глюкозо-аланинового цикла, участвующего в тонкой регуляции концентрации глюкозы в крови в тех условиях, когда в период между приемами пищи организм испытывает дефицит глюкозы. Источниками пирувата при этом являются указанные аминокислоты, образующиеся в мышцах при распаде белков и поступающие в печень, в которой они подвергаются дезаминированию. Образовавшийся аммиак в печени обезвреживается, участвуя в синтезе мочевины, которая выделяется из организма. Дефицит мышечных белков затем восполняется за счет поступления аминокислот пищи. [c.548]

    А.Я. Данилевский впервые разделил экстрагируемые из мышц белки на 3 класса растворимые в воде, экстрагируемые 8—12 % раствором хлорида аммония и белки, извлекаемые разбавленными растворами кислот и щелочей. В настоящее время белки мышечной ткани делят на три основные группы саркоплазматические, миофибриллярные и белки стромы. На долю первых приходится около 35%, вторых—45% и третьих—20% от всего количества мышечного белка. Эти группы белков резко отличаются друг от друга по растворимости в воде и солевых средах с различной ионной силой. [c.648]


    К. Мейер предпринял совместное исследование механических свойств мышечных белков с дифракцией рентгеновских лучей. Было показано, что в расслабленном мускуле цепи главных валентностей ориентированы параллельно друг другу, а в сокращенном — каким-то иным способом. У высушенного в растянутом состоянии мускула Мейер наблюдал дифракционную картину, типичную для волокнистой структуры диаграмма высушенного сокращенного образца отвечала аморфному состоянию. Прямо связывая макроскопические механические изменения белкового вещества с его молекулярным химическим и пространственным строением, автор предположил, что источником мускульной энергии является экзотермическая химическая реакция, что позднее было подтверждено экспериментально В.А. Энгельгардтом и М.Н. Любимовой (1942 г.). [c.68]

    В мышце находятся коллаген и эластин, которые в противоположность собственно мышечным белкам не содержат достаточного количества незаменимых аминокислот и трудно перевариваются при действии пищеварительных ферментов. В табл. 9 (см. приложение) приведено сопоставление аминокислотного состава белков, соединительной ткани мышц и полноценного белка молока — казеина. Содержание отдельных аминокислот дано в процентах при содержании в белке 16,0 г азота. [c.233]

    Однако по мере изучения природы белков и биологической роли каждого из них классификация сильно изменялась и стала основываться на свойствах, которые связаны с их большим функциональным разнообразием и распространенностью. Белки организма в целом представлены широким спектром веществ на долю белков, входящих в состав клеток, обычно приходится более половины сухой массы. Можно выделить некоторые отдельные группы ферменты, которые обеспечивают катализ биохимических реакций в клетке резервные белки структурные белки транспортные белки мышечные белки антитела токсины гормоны и регуляторные белки. Возможно также несколько более широкое понимание биологических функций белков для того, чтобы их классифицировать на три основные категории (табл. 23.1.2)—резервные белки, структурные, или механические белки и белки, проявляющие свои различные биологические свойства при комбинации или связывании с ионами или другими молекулами. [c.221]

    Биохимические функции. В репродуктивных тканях андрогены отвечают за их дифференцировку и функционирование. Образовавшийся в семенниках тестостерон и его активный метаболит ДГТ проникают в клетки-мишени методом простой или облегченной диффузии и взаимодействуют с одним и тем же белковым рецептором. Образовавшиеся гормон-рецепторные комплексы перемещаются в ядро, связываются с хроматином и стимулируют процессы синтеза белка (гл. И). В репродуктивных органах эти процессы реализуются в половой дифференцировке, основные этапы которой представляют собой хромосомы—гонады—фенотип. Кроме того, андрогены стимулируют сперматогенез, половое созревание и по принципу обратной связи контролируют секрецию гонадотропинов. Помимо влияния на функционирование репродуктивной системы, андрогены участвуют в контроле клеточного метаболизма многих других тканей и органов. Независимо от типа ткани андрогены проявляют анаболические эффекты, связанные со стимуляцией процессов транскрипции и увеличения скорости синтеза белка. Более всего андрогенных клеток-мишеней находится в скелетных мышцах, причем под действием гормонов происходит резкое увеличение мышечных белков и наращивание мышечной массы. Стимуляция белок-синтетических процессов под действием андрогенов отмечена в почках, сердечной мышце, костной ткани. Андрогены образуются не только в семенниках, но и в яичниках. Их роль в организме женщин или самок животных заключается в формировании поведенческих реакций, а также в контроле за синтезом белка в репродуктивных органах. [c.161]

    Рассмотренные выше белки расположены таким образом, чтобы продемонстрировать различные аспекты структуры и функции. Эта классификация в известной степени произвольна. Так, читатель может принять во внимание, что гемоглобин и мышечные белки могут рассматриваться в разделе белок-белковых взаимодействий, тропонин С —как белок, связывающий ион металла, а миозин — как белок, претерпевающий посттрансляционное метилирование. Белки можно изучать в нескольких аспектах, включая биосинтез, структуру, взаимодействия и биологическую роль. Любая попытка их классификации будет, по-видимому, лишь частично успешной, однако она дает возможность выдвинуть на передний край сходства и различия. Рассмотренные белки охватывают очень широкую область, вследствие чего описания являются вынужденно краткими. Рекомендуем читателю обратиться к цитированным обзорам. [c.579]

    Сократительная функция. В акте мышечного сокращения и расслабления участвует множество белковых веществ. Однако главную роль в этих жизненно важных процессах играют актин и миозин—специфические белки мышечной ткани. Сократительная функция присуща не только мышечным белкам, но и белкам цитоскелета, что обеспечивает тончайшие процессы жизнедеятельности клеток (расхождение хромосом в процессе митоза). [c.21]


    Структура мышцы и мышечных белков [c.392]

    Белок S-100 специфичен для нервной системы [10]. Он широко представлен как в нейронах, так и в глиальных клетках и охарактеризован как цитоплазматический и мембранно-связанный белок М 20 ООО он состоит из двух Са2+-связывающих полипептидных цепей. Видимо, S-100 принадлежит к группе сходных белков, для одного из которых, РАР 1Ь-белок (сокращение для кислого белка богатого фенилаланином), недавно была определена первичная структура [11]. S-100 имеет значительную структурную гомологию с Са +-связывающим мышечным белком тропонином С. Функция S-100 не выяснена в гл. 11 мы вернемся к его возможному участию в развитии нервной системы и пластичности. [c.315]

    Потери воды происходят не только при жарке, но и при варке мясных продуктов в воде, достигая (в отличие от растительных продуктов) заметных величин — в среднем от 30 до 50 % в зависимости от вида мяса. Эти потери происходят за счет разрушения третичной структуры мышечных белков при коагуляции-В то же время вторичная структура неспособна уже удерживать [c.184]

    V — и/8 приведена аналогичная зависимость для гидролиза АТФ, катализируемого мышечным белком миозином, который принимает непосредственное участие в превращении избыточной энергии пирофосфатной связи АТФ в механическую энергию мышечного сокращения. [c.211]

    Наиболее известный факт, говорящий о существовании клеточной памяти,-это стойкое сохранение дифференцированного состояния клеток во взрослом организме (см. гл. 16). Благодаря клеточной памяти неделящиеся клетки (например, нейроны) сохраняют свои характерные особенности, а делящиеся передают их потомкам. Однако дифференцировка, проявляющаяся внешне,-это обычно лишь последний этап длительного процесса. Благодаря клеточной памяти стимулы, направляющие клетку на тот или иной путь дифференцировки, могут оказывать свое действие значительно раньше. Например, в сомитах некоторые клетки на очень раннем этапе специализируются как предшественники мышечных клеток, а затем мигрируют из сомитов в те участки, где будут формироваться конечности (подробнее см. в разд. 15.9.3). Эти предшественники еще не содержат больших количеств специализированных сократительных белков, характерных для зрелых мышечных волокон они даже внешне не отличаются от других клеток зачатка конечности, которые происходят не из сомитов. Только через несколько дней они приобретают внешние признаки дифференцировки и начинают интенсивно синтезировать специфические мышечные белки. Остальные клетки будущей конечности, расположенные здесь же, дифференцируются в элементы соединительной ткани. Следовательно, выбор программы развития в мышечную клетку или же в соединительнотканную клетку произошел задолго до того, как это проявилось во внешней диффереицировке. Вероятно, эта программа была записана в клетках в виде менее явных химических изменений. [c.75]

    Более впечатляющими были, однако, эксперименты фуппы японских ученых [75,76]. В этих работах авторы непосредственно наблюдали вращение 7 субъединицы с помощью люминесцентного микроскопа. Чтобы видеть вращение 7 субъединицы, авторы прикрепили к ее выступающей из F, нижней части специальный маркер — фрагмент актина (один из мышечных белков). Актиновая нить длиною около [c.111]

    Гликоген, или животный крахмал, содержится в мышцах в количестве от 0,4 до 0,7% (обычно его количество не превышает 2%). Он играет роль запасного полисахарида и расходуется главным образом в процессе мышечной работы. С мышечными белками, особенно с миозином, гликоген образует комплексные соединения, обладающие высокой лабильностью. [c.250]

    Некоторые из таких белков могут растягиваться, причем нерастянутая а-форма молекулы переходит в растянутую р-форму. Этот процесс может быть прослежен методами рентгеновского анализа и, по-видимому, отвечает переходу спиральной формы полипептидной цепи (а-спираль, стр. 382) в растянутую (складчатая цепь, стр. 383). Миозин мыщечной ткани, по растворимости относящийся к альбуминам, в известном отношении близок к таким нитевидным молекулам. Соединяясь с другим мышечным белком, актином, который может существовать и в нитевидной и в глобулярной формах, миозин образует актомиозин, обладающий высокой е1Язкостью в растворах. [c.397]

    Энергия, необходимая для работы мышцы, выделяется в результате ферментативного гидролиза АТФ под действием мышечного белка миозина. Удельный вес мышцы, содержащей 10% миозина (мол. вес 2-10 ), приблизительно равен единице, коэффициент диффузии АТФ в мышце равен 10 см /сек. Реакция гидролиза АТФ под действием миозина характеризуется значениями кат=100 сек-, /(т(каж)= 10- М. Оцбнить, (при какой толщине мышечного волокна (моделируя его пластинкой) работа мышцы начнет лимитироваться диффузией, если начальная концентрация АТФ равна 1 10 3 М. [c.275]

    Было показано, что молекулы мышечного белка акто-миозина способны изменять свою длину непосредственно за счет химической энергии, выделяющейся при отщеплении остатка фосфорной кислоты от молекулы АТФ, т. е. этот процесс обусловливает сократительную деятельность мышц. Таким образом, система АТФ — белок играет роль аккумулятора химической энергии в организме. Накопленная химическая энергия по мере надобности превращается при помощи белка актомио-зина непосредственно в механическую энергию, без промежуточного перехода в тепловую энергию. Для этого [c.449]

    При связывании фермента на колонке при pH адсорбции 6,5 в верхней части ионообменника образуется ярко-красное кольцо мышечных белков, а по мере заполнения колонки белком целлюлоза приобретает опаловую, бледную желтизну. Граница раздела между матовой и желтовато-опаловой зонами постепенно продвигается книзу. После подачи на колонку буфера pH 7,9 (КОН-трицин) красное кольцо мышечных белков начинает постепенно двигаться книзу, разделяясь при этом на несколько отдельных колец и прокрашивая целлюлозу в бледно-розовый цвет. Необходимо дождаться выхода этого материала с колонки (для этого через колонку должно пройти 6—10 объемов колонки буфера, pH 7,9). После того как поглощение при 280 нм в элюате снизится до значения 0,1—0,2, на колонку подают буфер (10 мМ КОН-трицин, pH 7,9), содержащий вместо 3 мМ ацетата натрия 0,5 мМ [c.264]

    Простетическая группа наиболее известных животных пигментов — белка крови гемоглобина и мышечного белка мио-глобина, так же как хлорофилл, является порфирином. Гемоглобин и многлобин являются гемопротеинами, т. е. белками, содержащими в качестве простетнческой группы порфирии с хелатированным ионом железа, или гем. К гемопротеинам относятся также цитохромы и некоторые ферменты, такие, как пероксидаза и каталаза. В функционирующих гемоглобине н миоглобине железо находится в восстановленной форме, Fe + если же в их молекулах присутствует окисленная Ге +-форма, то они неактивны. Что касается цитохромов, то их нормальное функционирование зависит от легкости взаимопревращения окисленной и восстановленной форм. [c.167]

    В ряде работ рассматриваются электростатические эффекты, применяется полиэлектролитная модель мышечных белков. Трудно совместить возможные электростатические эффекты в среде, представляющей собой децпно рмальпый солевой раствор, с наблюдаемыми большими значениями Р . [c.402]

    Теория, развитая в [68], объясняет зависимость степени спиральности мышечных белков от pH среды, изученную Лави [69]. Удалось установить корреляцию между формой кривых и относительным содержанием анионных и катионных остатков в тро-помиозине и других мышечных белках. [c.217]

    Актин (A tin) Белок мышечных волокон. Входит в состав акгомиозина — основного сократительного мышечного белка. [c.543]

    При тепловой обработке мясных продуктов при 60—70 °С начинается денатурация белков. Вначале разрушается третичная структура миофибриллярных и саркоплазменных белков с выделением свободной воды. При некоторых условиях эта вода уожет затем внедриться во вторичную структуру соединительной ткани (коллагена и эластина) с образованием желатиноподобных соединений. Происходит частичный гидролиз мышечных белков с образованием растворимых в воде продуктов, в том числе пептидов и аминокислот. Общее количество этих продуктов может достигать 10 % исходного белка. При варке эти азотистые вещества переходят в бульон, где участвуют в образовании пенки при жарении остаются на жарочной поверхности вместе с сырьем. [c.167]

    Образующиеся продукты распада липидного комплекса мясных продуктов выделяются вместе с сочком. Эти продукты (в количестве до 25 % от общего количества) при варке переходят в бульон, При дальнейшей варке происходит частичный гидролиз триглицеридов до глицерина и жирных кислот. Жирные кислоты плохо растворимы в воде и вместе с продуктами распада мышечных белков участвуют в образовании пенки . Поскольку высо-К01молекулярные жирные кислоты обладают неприятным салистым привкусом, пенку удаляют. [c.167]

    Миозин представляет собой белок необычного сзроения, состоящий из длинной нитевидной части (хвост) и двух глобулярных головок. Общая длина одной молекулы составляет порядка 1600 нм, из которых на долю головок приходится около 200 нм. Миозин обычно выделяется в виде гексамера, образованного двумя одинаковыми полипептидными цепями с молекулярной массой 200 ООО каждая (так называемые тяжелые цепи) и четырьмя легкими цепями с молекулярной массой около 20 ООО. Тяжелые цепи закручены спиралью одна вокруг другой, образуя хвост, и несут на одном конце глобулярные головки, ассоциированные с легкими цепями. На головках миозина находятся два важных функциональных центра — каталитический центр, способный в определенных условиях осуществлять гидролитическое расщепление /3-7-пирофосфатной связи АТФ, и центр, обеспечивающий способность специфично связываться с другим мышечным белком — актином. [c.435]

    Вместе с тем уже давно было найдено, что такая классификация холинэстераз не удовлетворительна. В ходе изучения были обнаружены другие ферменты, катализирующие гидролиз ацетилхолина, но по другим отличительным признакам не относящиеся ни к ложной, ни к истинной холинэстеразе (или частично — к одной, частично — к другой). Такие ферменты были найдены при исследовании нервных элементов насекомых [23—27] и других беспозвоночных [11 ], в печени цьшлят[28], в миозиновой фракции мышечных белков [29] и т. д. Известные осложнения вносило то обстоятельство, что в одних и тех же тканях были обнаружены оба типа холинэстераз, которые не всегда удавалось разделить. Однако при тщательных исследованиях все же выяснилось, что холинэстеразы даже однотипных тканей различных животных могут различаться между собой по некоторым свойствам  [c.141]

    Аденозинтрифосфорная кислота (АТФ) представляет собой нуклеотид, построенный из аденина, рибозы и трех остатков фосфорной кислоты, и содержится в мышцах в количестве 0,25—0,4%. Взаимодействие ее с мышечным белком миозином, обладающим аденозинтрифосфатазной активностью, сопровождается превращением химиче- [c.251]

    Начало исследованию химического состава мышц, в частности мышечных белков, было положено работами А. Я. Данилевского и его учеников. Крупный вклад в изучение мышечных белков сделан Т. Барановским, В. Энгельгардтом и М. Любимовой. Экстрактивные вещества мышц исследовались акад. В. С. Гулевичем и его учениками, а также Н. Толкачевской, И. А. Смородинцевым, А. В. Палладиным, С. Севериным, Д. Фердманом и другими советскими исследователями. [c.232]

    Остальные мышечные белки находятся в незначительных количествах. Приведенное распределение основных фракций мышечных белков не является постоянным и значительно меняется в процессах посмертных изменений мышечной ткани, сопровождающихся переходом части растворимых белков в нерастворимое состояние. В живой мышце миоген и глобулин X входят в состав саркоплазмы, а миозин и актин — в состав мио-фибриллей., [c.233]


Ученые выяснили, как ремонтируются поврежденные мышцы

Восстановление поврежденной мышечной ткани происходит благодаря клеткам-сателлитам. А они не могут функционировать без специального белка, выяснили ученые.

Мышцы имеют замечательную способность к самовосстановлению. С помощью тренировок можно восстановить их после травмы, да и возрастная атрофия преодолевается при активном образе жизни. При растяжении мышцы болят, но обычно боль проходит через несколько дней.

Этой способностью мышцы обязаны клеткам-сателлитам — особым клеткам мышечной ткани, которые соседствуют с миоцитами, или мышечными волокнами. Сами же мышечные волокна — основные структурно-функциональные элементы мышцы — представляют собой длинные многоядерные клетки, обладающие свойством сокращения, так как в их состав входят сократительные белковые нити — миофибриллы.

Клетки-сателлиты — это, собственно, стволовые клетки мышечной ткани. При повреждениях мышечных волокон, которые возникают из-за травм или с возрастом, клетки-сателлиты интенсивно делятся.

Они ремонтируют повреждения, сливаясь вместе и образуя новые многоядерные мышечные волокна.

С возрастом количество клеток-сателлитов в мышечной ткани снижается, соответственно, снижается и способность мышц к восстановлению, а также сила мышц.

Ученые из Института изучения сердца и легких Общества Макса Планка (Германия) выяснили молекулярную механику мышечного самовосстановления при помощи клеток-сателлитов, которая до сих пор не была досконально известна. О результатах они написали в журнале Cell Stem Cell.

Их открытие, как считают ученые, поможет создать методику восстановления мышц, которую из лаборатории когда-нибудь можно будет перенести в клинику для лечения мышечной дистрофии. А может быть, и мышечной старости.

Исследователи выявили ключевой фактор — белок под названием Pax7, который играет основную роль в мышечной регенерации.

Собственно, этот белок в сателлитных клетках был известен давно, но специалисты считали, что основную роль белок играет сразу после рождения. Но оказалось, что он незаменим на всех этапах жизни организма.

Чтобы точно выяснить его роль, биологи создали генетически измененных мышей, у которых белок Pax7 в сателлитных клетках не работал. Это привело к радикальному сокращению самих сателлитных клеток в мышечной ткани. Затем ученые вызвали повреждения мышиных мышц путем инъекции токсина. У нормальных животных мышцы начинали интенсивно регенерировать, и повреждения заживали. Но у генетически измененных мышей без белка Pax7 мышечная регенерация стала почти невозможна. В результате биологи наблюдали в их мышцах большое количество мертвых и поврежденных мышечных волокон.

Ученые расценили это как доказательство ведущей роли белка Pax7 в мышечной регенерации.

Мышечную ткань мышей рассмотрели под электронным микроскопом. У мышей без белка Pax7 биологи обнаружили очень немногие сохранившиеся сателлитные клетки, которые по строению сильно отличались от нормальных стволовых клеток. В клетках отмечались повреждения органелл, и было нарушено состояние хроматина — ДНК в совокупности с белками, который в норме определенным образом структурирован.

Интересно, что сходные изменения появлялись в сателлитных клетках, которые культивировали долгое время в лаборатории в изолированном состоянии, без их «хозяев» — миоцитов. Клетки таким же образом деградировали, что и в организме генетически измененных мышей. А ученые обнаружили в этих деградировавших клетках признаки дезактивации белка Pax7, которая наблюдалась у мышей-мутантов. Дальше — больше: изолированные клетки-сателлиты через какое-то время переставали делиться, то есть стволовые клетки переставали быть стволовыми.

Если же, напротив, повысить активность белка Pax7 в сателлитных клетках, они начинают делиться более интенсивно. Все говорит о ключевой роли белка Pax7 в регенеративной функции сателлитных клеток. Остается придумать, как использовать его в потенциальной клеточной терапии мышечной ткани.

«Когда мышцы деградируют, например, при мышечной дистрофии, имплантация мышечных стволовых клеток будет стимулировать регенерацию, — объясняет Томас Браун, директор института.

— Понимание того, как работает Pax7, поможет модифицировать сателлитные клетки таким образом, чтобы сделать их как можно более активными.

Это может привести к революции в лечении мышечной дистрофии и, возможно, позволит сохранить силу мышц в старости».

А здоровые мышцы и физическая активность в пожилом возрасте — лучший способ отодвинуть возрастные болезни.

Пищевой белок и основы синтеза мышечного белка

Любая дискуссия о соответствии сывороточного белка функции поддержки здоровой мышечной ткани должна начинаться с определения самого главного: что представляет из себя сам белок?

Профессор Люк ван Лун, Медицинский центр Маастрихтского университета

Пищевой белок и основы синтеза мышечного белка

Объясняя основы белкового обмена и его значение для мышечной ткани, я хотел бы подчеркнуть, что все наши ткани, включая скелетные мышцы (которые являются основным объектом исследований моей лаборатории) постоянно синтезируются и снова разрушаются, будучи частью циклического процесса. Это означает, что мышца может быть полностью восстановлена всего за два месяца ─ это процесс, который включает как новые, так и переработанные аминокислоты.

С внешней точки зрения этот цикл обновления постоянно индуцируется двумя основными анаболическими (стимулирующими мышцы) стимулами: приемом пищи и физической активностью. Под потреблением пищи я подразумеваю незаменимые аминокислоты, полученные из пищевого белка. Как только вы едите или пьете что-то, содержащее белки, аминокислоты попадают в вашу систему кровообращения, стимулируя синтез белка скелетных мышц. Некоторые из этих аминокислот, такие как лейцин, особенно сильны в управлении этим анаболическим ответом на прием пищи.

Влияние на синтез мышц

Как же мы можем модулировать этот ответ? Каким образом мы можем повлиять на стимуляцию синтеза мышечного белка после приема пищи? Одним из способов, естественно, является изменение количества и типа потребляемого пищевого белка. Второй заключается в изменении другого основного анаболического стимула: количества физической активности, которая предшествует и/или следует за приемом белка. Это влияет на то, что происходит с белками, которые вы недавно употребили в пищу, а также с белками, которые вы перевариваете после выполнения упражнений. Поэтому, если вы будете тренироваться сегодня, реакция вашего тела на завтрак следующего дня тоже будет выше. Было показано, что это постпрандиальное увеличение скорости синтеза мышечного белка (после приема пищи) еще больше возрастает, когда физическая активность выполняется в день (дни), предшествующий приему пищи.

Популярное утверждение «вы – то, что вы едите» начинает приобретать гораздо больший смысл, как только вы понимаете эти основные принципы. Всего через два часа после ужина большая часть белка из еды будет превращена в нового Вас!

Какие белки?

В наших попытках усилить и контролировать синтез мышц посредством приема пищи мы можем изменять как тип, так и количество потребляемого белка. При интенсивных физических упражнениях увеличение количества белка, вероятно, необходимо для стимулирования большего синтеза: либо для поддержания мышечной массы, либо для ее увеличения. Возможно, более интересным вопросом в контексте этого поста является выбор белка. До настоящего времени исследования показали, что употребление 20 граммов высококачественного белка после тренировки достаточно для максимизации скорости синтеза мышечного белка в течение нескольких часов после восстановления у здоровых молодых спортсменов.

Также, вероятно, существуют различия в анаболических свойствах различных источников белка. Способность пищевого белка стимулировать синтез мышечного белка, по-видимому, зависит как от его усвояемости, так и от аминокислотного состава. Белки с высоким содержанием незаменимых аминокислот, которые быстро перевариваются и имеют высокое содержание лейцина, имеют тенденцию к большей синтетической реакции мышечного белка. Это объясняет, почему сывороточный белок часто стимулирует синтез мышечного белка в большей степени, чем другие белки.

Эффективное питание

Ключом к пониманию пригодности сывороточного белка, например, для спортивного питания является тот факт, что относительно небольшое количество сывороточного белка может вызывать относительно сильный анаболический ответ. Таким образом, атлеты могут принимать относительно небольшое количество сывороточного протеина и при этом максимально увеличить восстановление после тренировки. Эта компактная функциональность может быть полезна для всех нас, любителей спорта, а также для групп пациентов с более клинически выраженными нарушениями.

Конечно, изучение синтеза мышечного белка и влияние пищевого белка на него является гораздо более широкой областью. Исследования синтеза белка в базальных мышцах продолжают раскрывать эту информацию, но суть уже ясна: хотя потребление белка можно считать важным первым шагом в стимулировании синтеза мышечного белка, поддержание сбалансированного цикла распада и синтеза мышц зависит от сочетания достаточного, соответствующего пищевого белка и более, чем достаточной, привычной физической активности, особенно в пожилом возрасте.

Автор статьи: Лук Ван Лун, профессор физиологии упражнений и руководитель исследовательского подразделения M3 на кафедре биологии человека и наук о движении в Медицинском центре Маастрихтского Университета

Источник:Arla Foods Ingredients.

Back to articles-page

мышечных белков

% PDF-1.4 % 1 0 объект > эндобдж 11 0 объект /Заголовок /Предмет / Автор /Режиссер / Ключевые слова / CreationDate (D: 20210712175728-00’00 ‘) / ElsevierWebPDFS Технические характеристики (6.5) / ModDate (D: 20181003121223 + 02’00 ‘) / DOI (10.1016 / B978-0-12-814026-0.21602-8) / роботы (noindex) >> эндобдж 2 0 obj > эндобдж 3 0 obj > эндобдж 4 0 obj > эндобдж 5 0 obj > эндобдж 6 0 obj > эндобдж 7 0 объект > ручей application / pdfdoi: 10.1016 / B978-0-12-814026-0.21602-8

  • Мышечные белки
  • Майк Боланд
  • Лавдип Каур
  • Фэн Мин Чиан
  • Тьерри Астрюк
  • Мышца
  • Белковое питание
  • Мясо
  • Миофибрилла
  • Соединительная ткань
  • Миозин
  • Актин
  • Коллаген
  • Энциклопедия пищевой химии, 2018 1-17.10.1016 / B978-0-12-814026-0.21602-8
  • Elsevier
  • книга Энциклопедия пищевой химии © Elsevier Inc., 2018 г. Все права защищены 978-0-12-814026-01-1711710.1016 / B978-0-12-814026-0.21602-8 http://dx.doi.org/10.1016/B978-0-12 -814026-0.21602-86.510.1016 / B978-0-12-814026-0.21602-8noindexElsevier2018-04-24T15: 07: 52 + 05: 302018-10-03T12: 12: 23 + 02: 002018-10-03T12: 12 : 23 + 02: 00TrueAcrobat Distiller 8.1.0 (Windows) uuid: 70092de4-4bd6-415e-aba3-d1b86796dc7euuid: d08fe108-6638-4b00-afde-ca4b884ebf31 конечный поток эндобдж 8 0 объект > эндобдж 9 0 объект > эндобдж 10 0 obj > эндобдж 12 0 объект > эндобдж 13 0 объект > эндобдж 14 0 объект > эндобдж 15 0 объект > эндобдж 16 0 объект > эндобдж 17 0 объект > эндобдж 18 0 объект > эндобдж 19 0 объект > эндобдж 20 0 объект > эндобдж 21 0 объект > эндобдж 22 0 объект > эндобдж 23 0 объект > эндобдж 24 0 объект > эндобдж 25 0 объект > эндобдж 26 0 объект > эндобдж 27 0 объект > эндобдж 28 0 объект > эндобдж 29 0 объект > / ProcSet [/ PDF / Text / ImageC / ImageB / ImageI] >> эндобдж 30 0 объект > ручей x ڝ XɎ6 + | ҷ / 㹤) ZX $ = `q + nɰTM; ~ ke [\ 0> $ X ^ nLvu9DL, ZZw6 = Y7 |.GjiG > \ Mg {y / O4IQ (& Z.q & yf-bwp3 = `Ѣ # ӠMt» {sQy L ~ & @ lFp # p ͊pu’RA [7xS5 # gI # F [l; | 4 & ‘Ys8rEy + ɣdY

    Muscle Protein — обзор

    Мультигенные семейства кодируют мышечные белки

    Насколько нам известно, существует множество изоформ всех миофибриллярных белков. Они кодируются семействами генов, вероятно, у всех видов млекопитающих. Экспрессия этих генов имеет тенденцию быть тканеспецифичные или специфичные для типа волокон, и для многих существуют изоформы для плода, взрослого и (для некоторых) неонатального происхождения.

    Геном человека содержит 20 или более генов актина и псевдогенов (или их большие сегменты), распределенных на нескольких хромосомах. По-видимому, гены актина часто дублировались в процессе эволюции. Как упоминалось ранее, шесть генов актина экспрессируются в значительном количестве у млекопитающих тканеспецифическим образом. Гены актина скелета и миокарда расположены на хромосомах 1 и 15 соответственно.

    Ген мышечного MHC типа I расположен на хромосоме 14 как у человека, так и у мыши.Этот ген также кодирует сердечный β MHC, хотя это не идентичный белок. MHC скелетных мышц типа II находятся на 17 хромосоме у человека (11 у мышей). Существует также сердечный α MHC и эмбриональные и неонатальные сердечные и скелетные MHC.

    Точно так же существует множество генов регуляторных белков. В случае тропонина, например, есть два гена скелетных мышц для Tn I, один экспрессируется в быстрых, а другой — в медленных волокнах, а сердечный Tn I специфичен для миокарда.Сердце плода экспрессирует этот Tn I вместе с медленным Tn I скелета. Сердечный Tn I на 30-32 аминокислоты длиннее любого Tn I скелета и, таким образом, его легко отличить от них. У пациентов с инфарктом миокарда (ИМ) Tn I появляется в плазме примерно через 4 часа после ИМ и остается повышенным в течение примерно семи дней. Для Tn C также есть два скелетных гена и один кардиальный ген. Tn T также имеет две формы скелетных мышц: быструю и медленную. Существуют также две изоформы взрослого сердечного Tn T, называемые Tn T 1 и Tn T 2 , и две изоформы сердечного Tn T плода.Считается, что в каждом возрасте две формы являются результатом альтернативного сплайсинга РНК. Преобладающей изоформой взрослых является Tn T 2 , и было обнаружено, что Tn T 2 в сыворотке повышается примерно через четыре часа после инфаркта миокарда и остается определяемым в течение примерно 14 дней. Хотя сообщалось, что и Tn T, и Tn I на 90% (или более) чувствительны и специфичны для ИМ, было обнаружено, что Tn I не подвергается онтогенному рекапитуляции при повреждении ткани, что дает ему преимущество перед CKMB (или Tn T ) при подозрении на ИМ.Либо Tn T, либо Tn I могут использоваться в клинической практике, и анализ тропонина стал частью стандарта лечения в случаях подозрения на ИМ. У людей с нестабильной стенокардией у людей с повышенным уровнем сердечных тропонинов (особенно Tn I и Tn T) гораздо больше шансов, чем у других, иметь сердечный приступ в ближайшие месяцы, поэтому анализ тропонина имеет прогностическую, а также диагностическую ценность.

    Точно так же множественные гены, альтернативный сплайсинг РНК и посттрансляционные модификации приводят к множеству эссенциальных и регуляторных легких цепей, тропомиозинов, тайтинов и других миофибриллярных белков.Ферменты энергетического пути по-разному экспрессируются в различных типах скелетных волокон, в сердечных и гладких мышцах и на разных стадиях развития. Это также относится к регуляторным белкам Ca 2+ , таким как SR Ca 2+ -АТФаза, где один ген экспрессируется в волокнах FT, называемых SERCA1, а другой — в ST и сердечных волокнах, называемых SERCA2.

    Нуклеотидные последовательности нескольких копий генов имеют тенденцию со временем расходиться. Однако первичная структура актина должна быть консервативной, как упоминалось ранее, из-за большого количества сайтов специфического связывания по отношению к количеству аминокислот.Последовательность актина слизистой плесени Physarum polycephalum отличается только на 8% от последовательности актина скелетных мышц млекопитающих. Различные семейства миозинов сильно различаются, особенно в области хвоста и шеи, а некоторые имеют только одну тяжелую цепь. Количество легких цепей может варьироваться от одной до шести. Однако в миозине II гораздо меньше вариаций. Напр., Повторяющаяся структура хвостовых областей в мышечных МНС является высококонсервативной, и есть несколько сегментов сайтов связывания актина и АТФазы в головках, которые консервативны не только в подсемействе миозина II, но и во всех семействах миозина.Существует также поразительное структурное сходство между головками миозина и моторным кинезином микротрубочек, несмотря на общее отсутствие сходства последовательностей, и есть некоторые ключевые последовательности в областях связывания нуклеотидов, которые являются высококонсервативными. G-белки — это еще один класс белков, которые, как и головки миозина, связывают две другие структуры нуклеотид-зависимым образом, и G-белки также очень похожи по структуре на миозиновые головки и имеют поразительную гомологию последовательностей в области сайта связывания нуклеотидов. .Таким образом, эти молекулярные моторы и G-белки имеют общие структурные особенности, и вполне вероятно, что понимание одного из них улучшит понимание других.

    Фантастические мышечные белки и где их найти — ScienceDaily

    Исследователи из Центра молекулярной медицины Макса Дельбрюка Ассоциации Гельмгольца (MDC) разработали модель мыши, которая позволяет им заглянуть внутрь работающей мышцы и идентифицировать белки, которые позволяют саркомеру сокращаться, расслабляться, сообщать о своих энергетических потребностях и адаптироваться к упражнениям.В частности, они смогли составить карту белков в определенных субрегионах саркомера, начиная с «Z-диска», границы между соседними саркомерами. Это само по себе было значительным шагом вперед в изучении поперечно-полосатой мышцы.

    В процессе они сделали неожиданное открытие: миозин, один из трех основных белков, образующих поперечно-полосатые мышечные волокна, по-видимому, проникает в Z-диск. Модели того, как миозин, актин и эластичный каркасный белок titin работают вместе, в значительной степени игнорируют возможность того, что миозиновые филаменты проникают в структуру Z-диска.Только недавно немецкие ученые предположили, что это так, но до сих пор не было экспериментальных данных, подтверждающих эту модель.

    «Это будет неожиданностью даже для исследователей миозина», — говорит профессор Майкл Готтхардт, возглавляющий лабораторию нейромышечной и сердечно-клеточной биологии MDC и руководивший исследованием. «Это касается самых основ того, как мышцы генерируют силу».

    Кто там?

    Команда Готтхардта, в которую входят первые авторы доктора Франциска Рудольф и доктор Х.Клаудия Финк с помощью коллег из MDC и Геттингенского университета никогда не пыталась подтвердить эту теорию. Их основная цель состояла в том, чтобы идентифицировать белки в Z-диске и рядом с ним. Для этого они разработали модель мыши с искусственным ферментом под названием BioID, вставленным в гигантский белок тайтин. Затем Titin-BioID пометил белки рядом с Z-диском.

    Саркомеры — это крошечные молекулярные машины, наполненные тесно взаимодействующими белками. До сих пор было невозможно разделить белки, специфичные для разных субрегионов, особенно в живых, функционирующих мышцах.«Titin-BioID исследует определенные области структуры саркомера in vivo», — говорит доктор Филипп Мертинс, возглавляющий лабораторию протеомики MDC. «Это было невозможно раньше».

    Команда впервые применила BioID у живых животных в физиологических условиях и определила 450 белков, связанных с саркомером, из которых около половины уже известны. Они обнаружили разительные различия между сердцем и скелетными мышцами, взрослыми и неонатальными мышами, которые связаны со структурой саркомера, передачей сигналов и метаболизмом.Эти различия отражают потребность ткани взрослого человека в оптимизации производительности и выработки энергии по сравнению с ростом и ремоделированием ткани новорожденного.

    «Мы хотели знать, кто там, кто игроки», — говорит Готтхардт. «Большинство было ожидаемым, подтверждая наш подход».

    Сюрприз

    Белок, который они не ожидали увидеть в Z-диске, был миозином, который интегрирован в противоположном участке саркомера. Когда мышца начинает двигаться, миозин движется вдоль актина, сближая соседние Z-диски.Это скольжение актиновых и миозиновых нитей создает силу, которая позволяет нашему сердцу перекачивать кровь или нашим скелетным мышцам, чтобы поддерживать осанку или поднимать объект.

    Эта так называемая «скользящая филаментная модель» саркомера описывает производство силы и помогает объяснить, как соотносятся сила и длина саркомера. Однако современные модели не могут предсказать поведение полностью сжатых саркомеров. Эти модели предположили, что миозин не проникает в Z-диск при движении вдоль актина. Были некоторые намеки на то, что, возможно, так и будет.«Но мы не знали, было ли то, что мы видели в образцах окрашенных тканей, артефактом или реальной жизнью», — говорит Готтхардт. «С помощью BioID мы можем сидеть за Z-диском и смотреть, как проходит миозин».

    Готтхард соглашается с предложенной теорией, согласно которой миозин, попадающий в Z-диск, может ограничивать или ослаблять сокращение. Это может помочь решить текущую проблему, с которой ученые рассчитали, сколько силы может создать мышечное волокно по отношению к его длине, и приведет к усовершенствованной модели саркомера и, возможно, послужит для защиты мышц от чрезмерного сокращения.

    Почему это важно

    Понимание того, как мышечные волокна расширяются и сокращаются на молекулярном уровне в нормальных условиях, важно, чтобы исследователи могли затем определить, что происходит не так, когда мышцы повреждены, больны или атрофируются с возрастом. Определение того, какие белки вызывают проблемы, потенциально может помочь в определении новых целей лечения пациентов с сердечными заболеваниями или заболеваниями скелетных мышц.

    Готтхардт и его команда планируют в следующий раз использовать BioID для изучения животных с различными патологиями, например, чтобы увидеть, какие белки участвуют в атрофии мышц.«Возможно, белок, которого обычно нет, попадает в саркомер, и это часть патологии», — говорит Готтхардт. «Мы можем найти это с помощью BioID».

    Содержит ли мышечная ткань разные типы белка?

    Белок

    Мышечная ткань содержит множество различных белков с множеством различных функций. Белки мяса сгруппированы в три общих класса: (1) миофибриллярные, (2) стромальные и (3) саркоплазматические. Каждый класс белков отличается по функциональным свойствам, которые они вносят в мясо.

    Миофибриллярные белки — Мышечные волокна, мышечные клетки, сгруппированные в мышечные пучки, состоят из миофибрилл. Белки, составляющие миофибриллы, включая актин, миозин и некоторые другие, вместе называются миофибриллярными белками. Наиболее важными для структуры мышечных волокон миофибриллярными белковыми компонентами являются актин и миозин. Они представляют собой наиболее распространенные белки в мышцах и непосредственно участвуют в способности мышц сокращаться и расслабляться.

    Упорядоченное расположение белковых молекул, актина, миозина и других миофибриллярных белков, формирует миофиламенты. При просмотре в электронный микроскоп эти нити образуют узор из поперечных полос, которые видны как чередующиеся светлые и темные полосы. Ремешки будут различаться по длине в зависимости от состояния сокращения или расслабления мышц. Во время сокращения актиновые и миозиновые нити скользят вместе, образуя более сложный белок, известный как актомиозин. Там, где эти нити перекрываются, в полосчатой ​​структуре появляются более темные полосы.Предубойная и посмертная обработка чрезвычайно важны для контроля состояния мышечного сокращения, поскольку это связано с их болезненностью. если мышцы сокращаются (полосы перекрываются), когда мясо готовится к употреблению, оно будет менее нежным.

    Стромальные белки —Соединительная ткань состоит из водянистого вещества, в котором диспергирован матрикс фибрилл стромального белка; эти стромальные белки представляют собой коллаген, эластин и ретикулин.

    • Коллаген. Коллаген — самый распространенный белок, обнаруженный в неповрежденном теле млекопитающих. Он присутствует в рогах, копытах, костях, коже, сухожилиях, связках, фасциях, хрящах и мышцах.Коллаген — это уникальный и специализированный белок, который выполняет множество функций. Основные функции коллагена — обеспечивать силу и поддержку, а также помогать формировать непроницаемую мембрану (как в коже). В мясе коллаген является основным фактором, влияющим на нежность мышц после приготовления. Коллаген нелегко расщепить при приготовлении пищи, за исключением методов приготовления с использованием влажного тепла. Коллаген белый, тонкий и прозрачный. Микроскопически он представляет собой свернутую в спираль формацию, которая при нагревании размягчается и сжимается в короткую густую массу, что помогает придать приготовленному мясу пухлый вид.Сам по себе коллаген жесткий; однако нагревание (до соответствующей температуры) превращает коллаген в нежный желатин.
    • Эластин. Эластин содержится в стенках кровеносной системы, а также в соединительных тканях по всему телу животного и обеспечивает эластичность этих тканей. Эластин иногда называют «желтой» соединительной тканью из-за его цвета. Тыльная связка (тяжелый хрящ), присутствующая в жареных и стейках из лопаток, ребер, представляет собой почти чистый эластин. В отличие от коллагена, эластин не разрушается при приготовлении с использованием влажного тепла и его следует удалять из порезов, где он есть.К счастью, мышечная ткань молодых животных содержит относительно мало эластина.
    • Ретикулин. Ретикулин присутствует в гораздо меньших количествах, чем коллаген или эластин. Предполагается, что ретикулин может быть предшественником коллагена и / или эластина, поскольку он более распространен у молодых животных. Старые животные могут, но не обязательно, иметь больше соединительной ткани на единицу мышц, чем молодые животные. между молекулами коллагена увеличивается (снижение восприимчивости коллагена к солюбилизации, вызванной нагреванием) у старых животных, в результате чего мышцы становятся более жесткими, чем у более молодых животных.Как правило, чем меньше соединительной ткани в куске мяса, тем он нежнее.

    Sarcoplasmlc Proteins — саркоплазматические белки включают пигменты гемоглобина и миоглобина, а также широкий спектр ферментов.

    • Пигменты из гемоглобина и миоглобина помогают придать мышцам красный цвет. Гемоглобин переносит кислород из легких в ткани, в том числе в мышцы. Миоглобин присутствует в мышцах и накапливает кислород, переносимый в мышцу через кровь гемоглобином, до тех пор, пока он не будет использован в метаболизме.Углекислый газ, образующийся в процессе клеточного метаболизма, диффундирует из клеток (включая клетки мышц) и транспортируется в виде бикарбонат-иона в легкие, где он выдыхается в виде углекислого газа. Миоглобин присутствует в саркоплазме или жидкости для купания мышечной клетки; гемоглобин — это белок, содержащийся в красных кровяных тельцах или эритроцитах. В мясе содержится значительное количество гемоглобина, потому что не вся кровь удаляется из капилляров, артериол и венул во время убоя и разделки.

      Цвет консервных банок влияет на класс качества говяжьих туш, установленный Министерством сельского хозяйства США. Цвет также играет важную роль в эстетической привлекательности мяса в рыночной витрине. Цветовой диапазон от розового до красного в мышцах частично зависит от количества присутствующего миоглобина и частично из-за химического состояния (и свободных участков связывания) гема в миоглобине и гемоглобине.

      Различия в концентрации миоглобина зависят от вида, возраста и пола животного, а также типа мускулов.В мышцах крупного рогатого скота больше миоглобина, чем у свиней; зрелые овцы больше, чем ягнята; быков больше, чем коров; и постоянно работающие мышцы диафрагмы содержат больше миоглобина, чем менее часто используемые мышцы, такие как longissimus dorsi.

      При контакте с воздухом пигменты (миоглобин и гемоглобин) на поверхности мышц насыщаются кислородом. Оксигенация образует ярко-красный оксимиоглобин. Внутренняя часть мышцы останется фиолетовой, потому что кислород не может проникнуть в центральную часть мышцы.Мясо в магазинной упаковке (завернутое в кислородопроницаемую пластиковую пленку) обычно ярко-красного цвета, а мясо в вакуумной упаковке — пурпурно-красного цвета из-за пониженной проницаемости для кислорода упаковочной пленки. Говяжий фарш обычно упаковывают для розничной продажи в прозрачную кислородопроницаемую пленку, благодаря которой внешний вид становится ярко-красным. Когда эти упаковки открываются и устройство разламывается, внутренняя часть голавля или пирожка будет темно-коричневой или пурпурной, но она тоже станет светлее через несколько минут под воздействием кислорода воздуха.Длительное воздействие кислорода вызывает окисление оксимиоглобина и образование метмиоглобина непривлекательного коричневато-красного цвета. Хотя вкусовые качества такого мяса после приготовления могут быть удовлетворительными, коричневая мышца становится прогорклой и невкусной быстрее, чем ярко-красная мышца, если происходит дальнейшее хранение (до приготовления).

      В процессе отверждения миоглобин непрочно соединяется с оксидом азота с образованием нитрозомиоглобина. При приготовлении нитрозомиоглобин превращается в нитрозогемохром, который обычно затвердевает, имеет розовый цвет и чувствителен к свету.По этой причине вяленое мясо (например, ломтики ветчины) часто кладут в ящик для мяса с мясом (на поддоне для пены), перевернутым лицевой стороной вниз. Хотя нитрозогемохром чувствителен к свету, он термостабилен. В результате повторный нагрев вяленого мяса не приводит к дальнейшему изменению его цвета. Напротив, свежее мясо становится коричневато-красным при приготовлении, потому что образуются денатурированные глобины, гемихром и гемохром.

    • Ферменты, которые естественным образом встречаются в мышечной ткани, продолжают функционировать во время выдержки мяса.Протеолитические ферменты — это те, которые расщепляют белок, амилолитические ферменты расщепляют углеводы, а липолитические ферменты расщепляют жиры. Во время старения протеолитические ферменты расщепляют миофибриллярные белки, тем самым способствуя нежности мяса. Ферменты (например, активируемые кальцием протеазы и катепсины), ответственные за тендеризацию, чувствительны к времени и температуре — чем дольше мясо остается при температуре, оптимальной для фермента активности, тем более полным будет ферментативная деградация белков миофибриллы.

    Азотные экстрактивные вещества — еще одна группа веществ, относящихся к белкам (но не являющихся настоящими белками), представляет собой азотистые вещества и нуклеопептиды. Эти водорастворимые компоненты стимулируют выделение желудочного сока при проглатывании приготовленного мяса. Наряду с жиром они (особенно нуклеотиды и нуклеозиды и побочные продукты их метаболизма — ксантин и гипоксантин) обеспечивают большую часть аромата и вкуса мяса. Примерами этой группы веществ являются креатин, креатинин, пурины и свободные аминокислоты.Большее количество азотистых экстрактивных веществ присутствует в мышцах старых животных, и их больше в более активных мышцах, которые встречаются в менее нежных порезах. Азотистые экстракты частично ответственны за так называемый «дикий (интенсивный) вкус» мяса диких животных.

    Мышечная ткань содержит множество различных белков с множеством различных функций. Белки мяса сгруппированы в три общих класса: (1) миофибриллярные, (2) стромальные и (3) саркоплазматические.Каждый класс белков отличается по функциональным свойствам, которые они вносят в мясо.

    Миофибриллярные белки — Мышечные волокна, мышечные клетки, сгруппированные в мышечные пучки, состоят из миофибрилл. Белки, составляющие миофибриллы, включая актин, миозин и некоторые другие, вместе называются миофибриллярными белками. Наиболее важными для структуры мышечных волокон миофибриллярными белковыми компонентами являются актин и миозин. Они представляют собой наиболее распространенные белки в мышцах и непосредственно участвуют в способности мышц сокращаться и расслабляться.

    Упорядоченное расположение белковых молекул, актина, миозина и других миофибриллярных белков, формирует миофиламенты. При просмотре в электронный микроскоп эти нити образуют узор из поперечных полос, которые видны как чередующиеся светлые и темные полосы. Ремешки будут различаться по длине в зависимости от состояния сокращения или расслабления мышц. Во время сокращения актиновые и миозиновые нити скользят вместе, образуя более сложный белок, известный как актомиозин. Там, где эти нити перекрываются, в полосчатой ​​структуре появляются более темные полосы.Предубойная и посмертная обработка чрезвычайно важны для контроля состояния мышечного сокращения, поскольку это связано с их болезненностью. если мышцы сокращаются (полосы перекрываются), когда мясо готовится к употреблению, оно будет менее нежным.

    Стромальные белки —Соединительная ткань состоит из водянистого вещества, в котором диспергирован матрикс фибрилл стромального белка; эти стромальные белки представляют собой коллаген, эластин и ретикулин.

    • Коллаген. Коллаген — самый распространенный белок, обнаруженный в неповрежденном теле млекопитающих. Он присутствует в рогах, копытах, костях, коже, сухожилиях, связках, фасциях, хрящах и мышцах.Коллаген — это уникальный и специализированный белок, который выполняет множество функций. Основные функции коллагена — обеспечивать силу и поддержку, а также помогать формировать непроницаемую мембрану (как в коже). В мясе коллаген является основным фактором, влияющим на нежность мышц после приготовления. Коллаген нелегко расщепить при приготовлении пищи, за исключением методов приготовления с использованием влажного тепла. Коллаген белый, тонкий и прозрачный. Микроскопически он представляет собой свернутую в спираль формацию, которая при нагревании размягчается и сжимается в короткую густую массу, что помогает придать приготовленному мясу пухлый вид.Сам по себе коллаген жесткий; однако нагревание (до соответствующей температуры) превращает коллаген в нежный желатин.
    • Эластин. Эластин содержится в стенках кровеносной системы, а также в соединительных тканях по всему телу животного и обеспечивает эластичность этих тканей. Эластин иногда называют «желтой» соединительной тканью из-за его цвета. Тыльная связка (тяжелый хрящ), присутствующая в жареных и стейках из лопаток, ребер, представляет собой почти чистый эластин. В отличие от коллагена, эластин не разрушается при приготовлении с использованием влажного тепла и его следует удалять из порезов, где он есть.К счастью, мышечная ткань молодых животных содержит относительно мало эластина.
    • Ретикулин. Ретикулин присутствует в гораздо меньших количествах, чем коллаген или эластин. Предполагается, что ретикулин может быть предшественником коллагена и / или эластина, поскольку он более распространен у молодых животных. Старые животные могут, но не обязательно, иметь больше соединительной ткани на единицу мышц, чем молодые животные. между молекулами коллагена увеличивается (снижение восприимчивости коллагена к солюбилизации, вызванной нагреванием) у старых животных, в результате чего мышцы становятся более жесткими, чем у более молодых животных.Как правило, чем меньше соединительной ткани в куске мяса, тем он нежнее.

    Sarcoplasmlc Proteins — саркоплазматические белки включают пигменты гемоглобина и миоглобина, а также широкий спектр ферментов.

    • Пигменты из гемоглобина и миоглобина помогают придать мышцам красный цвет. Гемоглобин переносит кислород из легких в ткани, в том числе в мышцы. Миоглобин присутствует в мышцах и накапливает кислород, переносимый в мышцу через кровь гемоглобином, до тех пор, пока он не будет использован в метаболизме.Углекислый газ, образующийся в процессе клеточного метаболизма, диффундирует из клеток (включая клетки мышц) и транспортируется в виде бикарбонат-иона в легкие, где он выдыхается в виде углекислого газа. Миоглобин присутствует в саркоплазме или жидкости для купания мышечной клетки; гемоглобин — это белок, содержащийся в красных кровяных тельцах или эритроцитах. В мясе содержится значительное количество гемоглобина, потому что не вся кровь удаляется из капилляров, артериол и венул во время убоя и разделки.

      Цвет консервных банок влияет на класс качества говяжьих туш, установленный Министерством сельского хозяйства США. Цвет также играет важную роль в эстетической привлекательности мяса в рыночной витрине. Цветовой диапазон от розового до красного в мышцах частично зависит от количества присутствующего миоглобина и частично из-за химического состояния (и свободных участков связывания) гема в миоглобине и гемоглобине.

      Различия в концентрации миоглобина зависят от вида, возраста и пола животного, а также типа мускулов.В мышцах крупного рогатого скота больше миоглобина, чем у свиней; зрелые овцы больше, чем ягнята; быков больше, чем коров; и постоянно работающие мышцы диафрагмы содержат больше миоглобина, чем менее часто используемые мышцы, такие как longissimus dorsi.

      При контакте с воздухом пигменты (миоглобин и гемоглобин) на поверхности мышц насыщаются кислородом. Оксигенация образует ярко-красный оксимиоглобин. Внутренняя часть мышцы останется фиолетовой, потому что кислород не может проникнуть в центральную часть мышцы.Мясо в магазинной упаковке (завернутое в кислородопроницаемую пластиковую пленку) обычно ярко-красного цвета, а мясо в вакуумной упаковке — пурпурно-красного цвета из-за пониженной проницаемости для кислорода упаковочной пленки. Говяжий фарш обычно упаковывают для розничной продажи в прозрачную кислородопроницаемую пленку, благодаря которой внешний вид становится ярко-красным. Когда эти упаковки открываются и устройство разламывается, внутренняя часть голавля или пирожка будет темно-коричневой или пурпурной, но она тоже станет светлее через несколько минут под воздействием кислорода воздуха.Длительное воздействие кислорода вызывает окисление оксимиоглобина и образование метмиоглобина непривлекательного коричневато-красного цвета. Хотя вкусовые качества такого мяса после приготовления могут быть удовлетворительными, коричневая мышца становится прогорклой и невкусной быстрее, чем ярко-красная мышца, если происходит дальнейшее хранение (до приготовления).

      В процессе отверждения миоглобин непрочно соединяется с оксидом азота с образованием нитрозомиоглобина. При приготовлении нитрозомиоглобин превращается в нитрозогемохром, который обычно затвердевает, имеет розовый цвет и чувствителен к свету.По этой причине вяленое мясо (например, ломтики ветчины) часто кладут в ящик для мяса с мясом (на поддоне для пены), перевернутым лицевой стороной вниз. Хотя нитрозогемохром чувствителен к свету, он термостабилен. В результате повторный нагрев вяленого мяса не приводит к дальнейшему изменению его цвета. Напротив, свежее мясо становится коричневато-красным при приготовлении, потому что образуются денатурированные глобины, гемихром и гемохром.

    • Ферменты, которые естественным образом встречаются в мышечной ткани, продолжают функционировать во время выдержки мяса.Протеолитические ферменты — это те, которые расщепляют белок, амилолитические ферменты расщепляют углеводы, а липолитические ферменты расщепляют жиры. Во время старения протеолитические ферменты расщепляют миофибриллярные белки, тем самым способствуя нежности мяса. Ферменты (например, активируемые кальцием протеазы и катепсины), ответственные за тендеризацию, чувствительны к времени и температуре — чем дольше мясо остается при температуре, оптимальной для фермента активности, тем более полным будет ферментативная деградация белков миофибриллы.

    Азотные экстрактивные вещества — еще одна группа веществ, относящихся к белкам (но не являющихся настоящими белками), представляет собой азотистые вещества и нуклеопептиды. Эти водорастворимые компоненты стимулируют выделение желудочного сока при проглатывании приготовленного мяса. Наряду с жиром они (особенно нуклеотиды и нуклеозиды и побочные продукты их метаболизма — ксантин и гипоксантин) обеспечивают большую часть аромата и вкуса мяса. Примерами этой группы веществ являются креатин, креатинин, пурины и свободные аминокислоты.Большее количество азотистых экстрактивных веществ присутствует в мышцах старых животных, и их больше в более активных мышцах, которые встречаются в менее нежных порезах. Азотистые экстракты частично ответственны за так называемый «дикий (интенсивный) вкус» мяса диких животных.

    Протеом человека в скелетных мышцах

    Основная функция скелетных мышц — сокращение, которое обеспечивает устойчивость и движение тела. Скелетная мышца состоит из поперечно-полосатых мышечных клеток, которые сливаются в длинные мышечные волокна.Анализ транскриптома показывает, что 70% (n = 13839) всех белков человека (n = 19670) экспрессируются в скелетных мышцах, и 907 из этих генов демонстрируют повышенную экспрессию в скелетных мышцах по сравнению с другими типами тканей.

    • 907 повышенных генов
    • 111 обогащенных генов
    • 202 групповых обогащенных гена
    • Скелетная мышца имеет наибольшую групповую экспрессию генов, общих с языком

    Транскриптом скелетных мышц

    Анализ транскриптома скелетных мышц может быть визуализирован в отношении специфичности и распределения транскрибируемых молекул мРНК (рис. 1).Специфичность показывает количество генов с повышенной или не повышенной экспрессией в скелетных мышцах по сравнению с другими тканями. Повышенное выражение включает три подкатегории типа повышенного выражения:

    • Обогащенная ткань: как минимум в четыре раза выше уровень мРНК в скелетных мышцах по сравнению с любыми другими тканями.
    • Обогащенная группа: по крайней мере, в четыре раза выше средний уровень мРНК в группе из 2-5 тканей по сравнению с любой другой тканью.
    • Улучшенная ткань: по крайней мере, в четыре раза выше уровень мРНК в скелетных мышцах по сравнению со средним уровнем во всех других тканях.

    Распределение, с другой стороны, визуализирует, сколько генов имеет или не имеет обнаруживаемых уровней (NX≥1) транскрибированных молекул мРНК в скелетных мышцах по сравнению с другими тканями. Как видно из Таблицы 1, все гены, повышенные в скелетных мышцах, классифицируются как:

    • Обнаружен в одиночном: обнаружен в отдельной ткани
    • Обнаружен в некоторых: Обнаружен более чем в одной, но менее чем в одной трети тканей
    • Обнаружен во многих: обнаружен как минимум в трети, но не во всех тканях
    • Обнаружен во всех: Обнаружен во всех тканях

    Рисунок 1.(A) Распределение всех генов по пяти категориям на основе специфичности транскрипта в скелетных мышцах, а также во всех других тканях. (B) Распределение всех генов по шести категориям на основе обнаружения транскриптов (NX≥1) в скелетных мышцах, а также во всех других тканях.


    Как показано на рисунке 1, 907 генов демонстрируют некоторый уровень повышенной экспрессии в скелетных мышцах по сравнению с другими тканями. Три категории генов с повышенной экспрессией в скелетных мышцах по сравнению с другими органами показаны в таблице 1.В таблице 2 определены 12 генов с наибольшим обогащением в скелетных мышцах.

    Таблица 1. Количество генов в подразделяемых категориях повышенной экспрессии в скелетных мышцах.

    Таблица 2. 12 генов с наивысшим уровнем экспрессии в скелетных мышцах. «Тканевое распределение» описывает обнаружение транскрипта (NX≥1) в скелетных мышцах, а также во всех других тканях. «мРНК (ткань)» показывает уровень транскрипта в скелетных мышцах в виде значений NX.«Оценка тканевой специфичности (TS)» соответствует кратному изменению между уровнем экспрессии в скелетных мышцах и тканях со вторым по величине уровнем экспрессии.

    Джин Описание Распределение тканей мРНК (ткань) Оценка тканевой специфичности
    IDI2 изопентенилдифосфат-дельта-изомераза 2 Обнаружен в некоторых 141.6 125
    DUPD1 фосфатаза с двойной специфичностью и домен произомеразы, содержащий 1 Обнаружен в одиночном 38,9 71
    МХ2 тяжелая цепь миозина 1 Обнаружен в некоторых 428,9 31
    LRRC30 богатых лейцином повторов, содержащих 30 Обнаружен в одиночном 18.7 30
    МХ5 тяжелая цепь миозина 4 Обнаружен в одиночном 15,1 29
    SMTNL1 Smoothelin как 1 Обнаружен в некоторых 118,9 28
    ACTN3 актинин альфа 3 (ген / псевдоген) Обнаружен в некоторых 185,5 24
    PPP1R27 Регуляторная субъединица протеинфосфатазы 1 27 Обнаружен в некоторых 211.0 22
    MYADML2 маркер дифференцировки, связанный с миелоидом, такой как 2 Обнаружен в некоторых 44,5 20
    АНКРД23 анкириновый повторяющийся домен 23 Обнаружен в некоторых 184,5 15
    UCP3 разобщающий белок 3 Обнаружен в некоторых 99.6 15
    CHRNA10 холинергический рецептор никотиновая альфа 10 субъединица Обнаружен в некоторых 33,6 15

    Повышенная экспрессия белков в скелетных мышцах

    Углубленный анализ повышенных генов в скелетных мышцах с использованием профилей белков на основе антител позволил нам визуализировать паттерны экспрессии этих белков в различных функциональных компартментах, включая белки, связанные с i) сокращением, ii) функцией кальция и iii) ферментативной активностью. .

    Белки, связанные с сокращением, экспрессируются в скелетных мышцах

    Первичные структурные белки в скелетных миоцитах, связанные с сокращением, — это миозиновые и актиновые филаменты, образующие полосатый рисунок, который можно наблюдать в электронной микроскопии. Другое семейство белков, связанных с мышечным сокращением, — это семейство тропонинов, регулирующих связывание миозина с актином посредством конформационных изменений, зависящих от концентрации ионов кальция в клетках. Примеры членов семейств миозина и тропонина, экспрессируемых исключительно в скелетных мышцах, включают MYh3 и TNNT1, при этом MYh3 экспрессируется в быстрых (тип II) волокнах, а TNNT1 — в медленных (тип I) волокнах.Другим примером белка, участвующего в сокращении скелетных мышц, является миозинсвязывающий белок MYBPC1, который влияет на сокращение за счет образования поперечных мостиков в саркомере.


    MYh3
    TNNT1
    MYBPC1

    Белки, связанные с функцией кальция, экспрессируются в скелетных мышцах

    Как в сердце, так и в скелетных мышцах сокращение зависит от уровня внутриклеточного кальция.Однако, в отличие от кардиомиоцитов, где высвобождение кальция регулируется путем связывания ионов кальция из внешней среды с потенциалозависимыми кальциевыми каналами, скелетные миоциты накапливают кальций в саркоплазматическом ретикулуме до тех пор, пока нейрональный импульс не вызовет приток кальция вдоль миофиламентов. Три примера, связанных с функцией кальция с избирательной экспрессией в скелетных мышцах, — это RYR1, CASQ1 и JPh2. RYR1 — это рецептор рианодина, действующий как канал высвобождения кальция, в то время как CASQ1 необходим для хранения кальция в саркоплазматическом ретикулуме.JPh2 способствует функциональному взаимодействию между клеточной поверхностью и внутриклеточными каналами высвобождения кальция.


    RYR1
    CASQ1
    JPh2

    Белки, связанные с ферментативной активностью, экспрессируемой в скелетных мышцах

    Ферментативная активность — важная функция физиологии скелетных мышц, которая связана с различными процессами, такими как метаболизм, накопление и регенерация гликогена.Примеры трех белков, участвующих в ферментативной активности с избирательной экспрессией в скелетных мышцах, включают AMPD1, PYGM и ENO3. AMPD1 — это фермент, участвующий в пуриновом нуклеотидном цикле, и он играет решающую роль в энергетическом обмене, в то время как фермент PYGM необходим для метаболизма углеводов и гликогенолиза. ENO3 — это изофермент, который, как предполагается, играет роль в развитии и регенерации мышц, с мутациями, связанными с болезнью накопления гликогена.


    AMPD1
    PYGM
    ENO3

    Экспрессия генов разделяется между скелетными мышцами и другими тканями

    В скелетных мышцах экспрессируется 202 гена, обогащенных группами.Обогащенные группы гены определяются как гены, показывающие в 4 раза более высокий средний уровень экспрессии мРНК в группе из 2-5 тканей, включая скелетные мышцы, по сравнению со всеми другими тканями.

    Чтобы проиллюстрировать связь ткани скелетных мышц с другими типами тканей, был создан сетевой график, отображающий количество генов с общей экспрессией между различными типами тканей.

    Рис. 2. Интерактивный сетевой график обогащенных и группированных генов скелетных мышц, связанных с их соответствующими обогащенными тканями (серые круги).Красные узлы представляют количество генов, обогащенных скелетными мышцами, а оранжевые узлы представляют количество генов, обогащенных группой. Размеры красных и оранжевых узлов связаны с количеством генов, отображаемых в узле. На каждый узел можно щелкнуть, и в результате отображается список всех обогащенных генов, связанных с выделенными краями. Сеть ограничена групповыми обогащенными генами в комбинациях до 5 тканей, но итоговые списки показывают полный набор групповых обогащенных генов в конкретной ткани.

    Скелетные мышцы разделяют наибольшую экспрессию генов, обогащенных группой, с сердцем, что ожидается, поскольку и сердце, и скелетные мышцы являются поперечнополосатыми мышцами со многими сходными чертами. Двумя примерами белков с общей экспрессией в сердце и скелетных мышцах являются MYH7 и LDB3. MYH7 связан с сокращением и показывает дифференциальную экспрессию между медленными (тип I) и быстрыми (тип II) мышечными волокнами. LDB3 участвует в организации саркомеров и отчетливо экспрессируется в Z-дисках сердца.


    MYH7 — скелетная мышца
    MYH7 — сердечная мышца


    LDB3 — скелетная мышца
    LDB3 — сердечная мышца

    Скелетная мышца — один из крупнейших органов человеческого тела, и до 50% общей массы тела составляют скелетные мышцы. Основная функция скелетных мышц — сокращение, которое приводит к движению тела, но также необходимо для осанки и устойчивости тела.В отличие от сердечной мышцы, другой поперечно-полосатой мышцы, похожей по структуре, сокращение скелетных мышц находится под произвольным контролем и инициируется импульсами из мозга. Еще одна важная функция скелетных мышц — регулирование температуры тела. Тепло выделяется, когда мышцы сокращаются и вызывают расширение кровеносных сосудов кожи. Таким образом, скелетные мышцы также участвуют в регуляции кровотока.

    Скелетные мышцы вместе с сердечной мышцей состоят из поперечно-полосатой мышечной ткани, образующей параллельные мышечные волокна.Поперечно-полосатая мышечная ткань состоит из миоцитов, расположенных в виде длинных и тонких многоядерных волокон, которые пересекаются правильным рисунком из тонких красных и белых линий, что придает мышце характерный вид и ее название. Существует два типа мышечных волокон (быстрые и медленные) в зависимости от типа присутствующего миозина. Эти типы волокон невозможно различить при обычном окрашивании гематоксилин-эозином (НЕ).

    Развитие и нормальная деятельность скелетных мышц зависят от нервной системы и тесно связаны с ней.Скелетные мышцы прикрепляются к кости и сокращаются добровольно (посредством нервной стимуляции), в отличие от других распространенных типов мышц, то есть сердечной мышцы и гладкой мышцы.

    Основным типом клеток скелетных мышц является миоцит. Миоциты сливаются во время развития, образуя большие многоядерные клетки, называемые синцитиями. Клетки богаты митохондриями и в значительной степени содержат белки актина и миозина, расположенные в повторяющихся единицах, называемых саркомерами. Гистологически это высокоструктурированное расположение саркомеров выглядит как темные (A-полосы) и светлые (I-полосы) полосы, которые хорошо видны на микроскопическом изображении.Помимо мышечных волокон, скелетные мышцы также состоят из прилегающих полос соединительной и жировой ткани. Ткань скелетных мышц сильно васкуляризована с тонкой сетью капилляров, проходящих между волокнами.

    Используя световую микроскопию и иммуноокрашивание, мы можем детально изучить и визуализировать сложность скелетных мышц. На видео ниже скелетные мышцы показаны красным цветом, а сложная сеть нервов — бирюзовым. Полная версия видео находится здесь.

    Гистологию скелетных мышц человека, включая подробные изображения и информацию о различных типах клеток, можно просмотреть в гистологическом словаре белкового атласа.

    Здесь описаны и охарактеризованы гены, кодирующие белок, экспрессируемые в скелетных мышцах, вместе с примерами иммуногистохимически окрашенных срезов ткани, которые визуализируют соответствующие паттерны экспрессии белков генов с повышенной экспрессией в скелетных мышцах.


    Профилирование транскриптов было основано на комбинации трех наборов данных транскриптомики (HPA, GTEx и FANTOM5), что соответствует в общей сложности 9332 образцам из 113 различных типов нормальных тканей человека. Окончательное согласованное значение нормализованной экспрессии (NX) для каждого типа ткани использовалось для классификации всех генов в соответствии с тканеспецифической экспрессией на две разные категории на основе специфичности или распределения.

    Uhlén M et al., Тканевая карта протеома человека. Science (2015)
    PubMed: 25613900 DOI: 10.1126 / science.1260419

    Yu NY et al., Дополнительная характеристика ткани путем интеграции профилей транскриптомов из Атласа белков человека и консорциума FANTOM5. Nucleic Acids Res. (2015)
    PubMed: 26117540 DOI: 10.1093 / nar / gkv608

    Fagerberg L et al., Анализ тканеспецифической экспрессии человека путем полногеномной интеграции транскриптомики и протеомики на основе антител. Протеомика клеток Mol. (2014)
    PubMed: 24309898 DOI: 10.1074 / mcp.M113.035600

    Lindskog C et al., Протеомы сердечных и скелетных мышц человека, определенные с помощью транскриптомики и профилирования на основе антител. BMC Genomics. (2015)
    PubMed: 26109061 DOI: 10.1186 / s12864-015-1686-y

    Гистологический словарь — скелетная мышца

    Белки в структурах — мышца

    Ученые интересуются строением мышц по разным причинам.Например, диетологам необходимо знать детали структуры и химического состава мышц, чтобы они могли консультировать пищевые компании о том, как обращаться с мясом и обрабатывать мясные продукты. Врачи, физиотерапевты и ученые в области спорта заинтересованы в том, чтобы узнать больше о мышцах, чтобы они могли более эффективно лечить мышечные травмы и заболевания.

    Мышечная ткань сокращается и расслабляется под действием электрических раздражителей, исходящих от мозга по нервам. Электрические стимулы высвобождают ионы кальция из компонента мышечной клетки.Высвобождение ионов кальция инициирует сокращение мышц. Сокращения вызывают движение тела. Вовлеченные силы могут быть огромными; все усилия, которые прилагает штангист, происходит за счет сокращения мышц. Откуда берется необходимая энергия?

    Специальные небольшие молекулы ( АТФ, , аденозинтрифосфат), вырабатываемые во время дыхания, обеспечивают запас энергии, который используют мышцы. Когда эти маленькие молекулы распадаются, они передают энергию мышцам.Как мышцы могут превратить эту химическую энергию в кинетическую энергию?

    Это белки в мышцах, которые реагируют на нервные импульсы, изменяя упаковку своих молекул. Однако, чтобы увидеть, как это работает, нам нужно посмотреть, как молекулы собираются вместе, и на их структуру.

    Сотни мышечных волокон длиной до нескольких сантиметров каждое объединяются в одну мышцу. Каждое волокно состоит из множества мелких миофибрилл (рис. 5).Миофибриллы имеют характерный узор из поперечных линий, называемых полосами , которые образованы расположением белковых молекул.

    Молекулы белка образуют нитей . Есть два типа нити накала; толстый и тонкий. Толстые нити содержат миозина , тонкие нити содержат актин , тропонин и тропомиозин . Ученые считают, что мышцы сокращаются за счет скольжения двух типов нитей друг над другом, так что они больше перекрываются (рис. 5).

    Аминокислоты с разветвленной цепью и синтез мышечного белка у человека: миф или реальность? | Журнал Международного общества спортивного питания

    В общей сложности мышечный белок состоит из двадцати аминокислот. Девять из двадцати считаются незаменимыми аминокислотами (EAA), что означает, что они не могут вырабатываться организмом в физиологически значимых количествах и, следовательно, являются важными компонентами сбалансированной диеты. Мышечный белок находится в постоянном состоянии обмена, что означает, что синтез белка происходит непрерывно, чтобы заменить белок, потерянный в результате распада белка.Для синтеза нового мышечного белка все EAA вместе с одиннадцатью незаменимыми аминокислотами (NEAA), которые могут вырабатываться в организме, должны присутствовать в адекватных количествах. Аминокислоты с разветвленной цепью лейцин, изолейцин и валин являются тремя из девяти EAA. Лейцин является не только предшественником синтеза мышечного белка, но также может играть роль регулятора внутриклеточных сигнальных путей, которые участвуют в процессе синтеза белка (например, [1]).

    Идея о том, что BCAA могут обладать уникальной способностью стимулировать синтез мышечного белка, выдвигалась более 35 лет.Данные, подтверждающие эту гипотезу, были получены при изучении ответов крыс. В 1981 г. Бузе [2] сообщил, что у крыс BCAA могут ограничивать скорость синтеза мышечного белка. Дополнительные исследования подтвердили концепцию уникального воздействия BCAA на синтез мышечного белка у крыс, хотя лишь немногие изучали реакцию на пероральное употребление только BCAA. Гарлик и Грант показали, что введение смеси BCAA крысам увеличивает скорость синтеза мышечного белка в ответ на инсулин [3], но они не измеряли эффекты только BCAA.Введение крысам только BCAA Kobayashi et al. [4], как было показано, вызывает увеличение синтеза мышечного белка, но ответ был временным. Предположительно скорость синтеза быстро стала ограничиваться доступностью других EAA.

    Исследования синтеза мышечного белка у крыс имеют ограниченное отношение к реакции человека. Скелетные мышцы составляют гораздо меньший процент от общей массы тела у крыс по сравнению с людьми, и регулирование синтеза мышечного белка во многих отношениях отличается.Так, в своей знаменательной книге по метаболизму белков Уотерлоу и его коллеги на основании имеющихся данных пришли к выводу, что пищевые аминокислоты не стимулируют синтез мышечного белка у крыс [5]. Хотя недавняя работа ставит под сомнение это утверждение, ограниченный стимулирующий эффект пищевых аминокислот на синтез белка у крыс отражает тот факт, что в нормальных постабсорбтивных условиях имеются избыточные эндогенные аминокислоты, позволяющие увеличить синтез белка, если активность внутриклеточных факторы, участвующие в инициации синтеза белка, стимулируются.Выражаясь по-другому, синтез мышечного белка у крыс, по-видимому, ограничивается скорее процессом инициации, чем процессом трансляции. Напротив, как будет показано ниже, у людей этого не происходит. Еще одно важное различие между исследованиями, изучающими влияние аминокислот на синтез мышечного белка у людей и крыс, связано с обычно используемыми методологиями. В исследованиях на крысах обычно используется метод «затопляющей дозы» [6]. Эта процедура включает измерение включения индикатора аминокислот в мышечный белок в течение очень короткого промежутка времени, часто всего 10 минут.Этот подход не делает различий между кратковременной и устойчивой стимуляцией синтеза белка. Физиологически значима только длительная стимуляция синтеза. Потребление несбалансированной смеси аминокислот, такой как BCAA, может временно стимулировать синтез белка за счет использования эндогенных запасов других предшественников синтеза белка. Однако эндогенные запасы аминокислот, например, в плазме и свободных внутриклеточных пулах, весьма ограничены и могут быстро истощиться.Если стимуляция синтеза белка не может быть продолжена, это не имеет большого физиологического значения. Следовательно, метод дозирования наводнения, обычно используемый для измерения синтеза мышечного белка у крыс, дает результаты с неопределенным отношением к питанию человека. Поскольку пищевые добавки BCAA предназначены для употребления в пищу человеком, в центре внимания этого краткого обзора будут исследования на людях.

    Продажа BCAA в качестве пищевых добавок превратилась в многомиллионный бизнес.В основе маркетинга этих продуктов лежит широко распространенное мнение о том, что потребление BCAA стимулирует синтез мышечного белка и, как следствие, вызывает анаболический ответ. BCAA также можно употреблять с целью улучшения «умственной сосредоточенности», но мы не будем рассматривать это применение. Основная цель этой статьи — оценить утверждение, что только BCAA являются анаболическими, — адекватно подтверждена теоретически или эмпирически исследованиями на людях. Неявным в нашей оценке будет исследование того, играет ли состояние фосфорилирования эукариотических факторов инициации роль регулятора скорости в регуляции синтеза мышечного белка у людей.

    Оборот мышечного белка и потребление белка с пищей

    Мышечный белок находится в постоянном состоянии оборота, что означает, что новый белок постоянно вырабатывается, в то время как старые белки разрушаются. Анаболическое состояние не имеет конкретного определения, но обычно относится к обстоятельствам, при которых скорость синтеза мышечного белка превышает скорость распада мышечного белка. Результат — набор мышечной массы. Обычно считается, что анаболическое состояние вызывается стимуляцией синтеза мышечного белка, но теоретически оно также может быть результатом ингибирования распада мышечного белка.

    Основная метаболическая цель приема добавок BCAA — максимизировать анаболическое состояние. Широко распространено мнение, что BCAA вызывают анаболическое состояние, стимулируя синтез мышечного белка. Обильная доступность всех EAA является необходимым условием для значительной стимуляции синтеза мышечного белка [7]. Синтез мышечного белка будет ограничен из-за отсутствия каких-либо EAA, тогда как нехватка NEAA может быть компенсирована увеличением de novo продукции дефицитных NEAA [7].В постпрандиальном состоянии после приема пищи, содержащей белок, все предшественники EAA, необходимые для синтеза нового мышечного белка, могут быть получены либо из повышенных концентраций в плазме, возникающих в результате переваривания потребленного белка, либо в результате его рециркуляции в результате распада белка. В этих условиях обильной доступности EAA скорость синтеза мышечного белка превышает скорость распада, что приводит к анаболическому состоянию. В постабсорбционном состоянии уровни EAA в плазме падают ниже постпрандиальных значений, потому что аминокислоты больше не всасываются.В результате EAA больше не поглощаются мышцами, а высвобождаются мышцами в плазму [8]. Это катаболическое состояние мышечного белка в постабсорбционном состоянии обеспечивает постоянную доступность EAA для других тканей для поддержания скорости синтеза белка за счет мышечного белка, который можно рассматривать как резервуар EAA для остальных. тела, чтобы опираться.

    Так как EAA не могут продуцироваться в организме и происходит чистое высвобождение EAA из мышц, в состоянии постабсорбции единственным источником предшественников EAA для синтеза мышечного белка являются внутриклеточные EAA, полученные в результате распада мышечного белка [8].Помимо того, что они повторно включаются в мышечный белок посредством синтеза, некоторые EAA, высвобождаемые в результате распада мышечного белка, могут частично окисляться в мышцах, что делает их недоступными для повторного включения в мышечный белок. EAA, высвобождаемые в результате распада мышечного белка, которые не включаются в мышечный белок или не окисляются в мышечной ткани, высвобождаются в плазму, после чего они могут либо поглощаться другими тканями в качестве предшественников для синтеза белка, либо необратимо окисляться [9].Таким образом, скорость синтеза мышечного белка всегда будет ниже, чем скорость распада мышечного белка в состоянии после абсорбции, из-за чистого потока EAA от распада белка в плазму и окислительных путей. Другими словами, синтез мышечного белка не может превысить скорость распада мышечного белка, когда предшественники полностью получены из распада белка, и, таким образом, анаболическое состояние не может возникнуть в отсутствие потребления экзогенных аминокислот.

    Являются ли BCAA анаболическими в состоянии после абсорбции?

    Теоретические соображения

    Все предшественники EAA для синтеза мышечного белка в постабсорбирующем состоянии являются производными от распада мышечного белка.Постоянно сообщалось, что у нормальных людей после абсорбции скорость распада мышечного белка превышает скорость синтеза мышечного белка примерно на 30% [10]. Потребление только BCAA (то есть без других EAA) может только увеличить синтез мышечного белка в постабсорбтивном состоянии за счет повышения эффективности рециркуляции EAA из расщепления белка обратно в синтез белка, в отличие от их высвобождения в плазму или окисленный. Это связано с тем, что все 9 EAA (а также 11 NEAA) необходимы для производства мышечного белка, а EAA не могут производиться в организме.Если потребляются только 3 EAA, как в случае с BCAA, то распад белка является единственным источником оставшихся EAA, необходимых в качестве предшественников для синтеза мышечного белка. Следовательно, потребление только BCAA теоретически невозможно для создания анаболического состояния, при котором синтез мышечного белка превышает распад мышечного белка. Если сделать щедрое предположение, что потребление BCAA повышает эффективность рециркуляции EAA от распада мышечного белка до синтеза мышечного белка на 50%, то это приведет к увеличению скорости синтеза мышечного белка на 15% (30% рециркулируется в базовом режиме). состояние X 50% улучшение рециркуляции = 15% увеличение синтеза).Кроме того, снижение на 50% высвобождения ЕАА в плазму из мышц также уменьшило бы плазменный и внутриклеточный пулы свободных ЕАА. Рисунок Рис. 1 схематически иллюстрирует эти принципы. Поскольку повышение эффективности рециркуляции на 50% будет примерно разумным максимальным пределом, это означает, что максимальная стимуляция синтеза мышечного белка не может превышать 15%. Это соответствовало бы увеличению фракционной скорости синтеза мышцы от базального значения около 0,050% / ч в базовом состоянии до 0.057% / час, и эту разницу во фракционной скорости синтеза (FSR) белка трудно точно измерить [11].

    Рис. 1

    Схематическое изображение рециркуляции незаменимых аминокислот (EAA) из распада мышечного белка в синтез мышечного белка в постабсорбтивном состоянии. Произвольные единицы используются для простоты и основаны на измеренных скоростях каждого пути у людей после абсорбции [10]. a Нормальное состояние после абсорбции.Примерно 70% EAA, образующихся при распаде мышечного белка, перерабатываются в синтез белка [10]. В результате распада белка происходит чистый отток примерно 85% EAA, которые могут либо поглощаться и включаться в белок в других тканях, либо окисляться. Около 15% EAA от распада белка частично окисляются в мышцах и недоступны для синтеза белка. Показатели внешнего потока и внутриклеточного окисления ЕАА являются средними, поскольку некоторые ЕАА, такие как фенилаланин, совсем не окисляются в мышцах. b Представление о 50% -ном увеличении эффективности рециркуляции EAA от распада мышечного белка до синтеза белка. В этом примере синтез увеличится с 70 до 80 единиц, или на 20%. Синтез белка никогда не может превышать распад белка в постабсорбционном состоянии, поскольку расщепление белка является единственным источником EAA

    .
    Эмпирические результаты

    BCAA вводили внутривенно в единственных исследованиях, определяющих реакцию метаболизма мышечных белков у людей только на BCAA.Хотя вливание BCAA не является общепринятым способом употребления пищевой добавки, было показано, что вводимые внутривенно и перорально аминокислоты вызывают сопоставимые эффекты на синтез мышечного белка в других случаях [12]. Следовательно, разумно оценить статьи, в которых описывается реакция синтеза мышечного белка на внутривенное вливание BCAA у людей.

    Louard et al. [13] использовали метод баланса предплечий для количественной оценки реакции на внутривенное вливание смеси BCAA в течение 3 часов у 10 субъектов после абсорбции.Метод баланса предплечья включает измерение поглощения и высвобождения индивидуальных EAA (в данном случае лейцина и фенилаланина) и их изотопно-меченных аналогов. Рассчитаны скорости исчезновения (Rd) и появления (Ra) фенилаланина и лейцина. Предполагая, что баланс лейцина и фенилаланина в мышцах является репрезентативным для всех EAA, Rd. Считается, что фенилаланин отражает синтез мышечного белка, поскольку синтез белка — единственная судьба фенилаланина, поглощаемого мышцами из плазмы.Rd. лейцина нельзя интерпретировать с точки зрения синтеза белка, поскольку лейцин, поглощаемый мышцами, может окисляться, а также включаться в белок. Трехчасовая инфузия BCAA увеличила плазменные концентрации всех 3 BCAA в четыре раза, в то время как концентрации других EAA снизились [13]. Синтез мышечного белка снизился с 37 +/- 3 до 21 +/- 2 нмоль / мин / 100 мл ноги (статистически значимо, p <0,05) [13], вместо того, чтобы стимулироваться инфузией BCAA. Не было значительных изменений в чистом балансе фенилаланина, что указывает на то, что распад мышечного белка также уменьшился на величину, аналогичную сокращению синтеза мышечного белка.Баланс между синтезом и распадом мышечного белка оставался отрицательным, что означало, что катаболическое состояние сохранялось, а анаболическое состояние не возникало. Одновременное снижение синтеза и распада мышечного белка во время инфузии BCAA можно охарактеризовать как снижение оборота мышечного белка.

    Аналогичные результаты были получены теми же исследователями, когда они увеличили продолжительность инфузии BCAA до 16 часов у 8 нормальных добровольцев и определили, стимулирует ли хроническое повышение BCAA синтез мышечного белка [14].Для расчета синтеза и распада мышечного белка использовалась та же методика баланса предплечий, что и в предыдущем исследовании. 16-часовая инфузия увеличивает концентрацию BCAA от 5 до 8 раз [14], что почти вдвое превышает уровни, достигаемые при пероральном приеме нормальной дозы BCAA [15]. Как и в предыдущем исследовании, синтез мышечного белка (отраженный фенилаланином Rd) был снижен у субъектов, получавших BCAA, по сравнению с инфузией физиологического раствора с 36 +/- 5 до 27 +/- 2 нмоль / мин / 100 мл. был также снижен, что означает, что оборот мышечного белка также был снижен, и катаболическое состояние сохранялось.

    Из этих двух исследований можно сделать вывод, что инфузия BCAA не только не увеличивает скорость синтеза мышечного белка у людей, но фактически снижает скорость синтеза мышечного белка и скорость обмена мышечного белка. Катаболическое состояние не было обращено в анаболическое ни в одном исследовании. Кроме того, можно ожидать, что устойчивое снижение скорости оборота мышечного белка будет иметь пагубный эффект на мышечную силу, даже если мышечная масса сохраняется. Оборот мышечного белка обновляет мышечные волокна и приводит к повышению эффективности сокращения на уровне отдельных волокон [16], что отражается в увеличении силы in vivo, независимо от мышечной массы [17, 18].

    Неспособность синтеза мышечного белка значительно увеличиться в ответ на инфузию только BCAA, как и ожидалось в соответствии с теоретическими соображениями, обсужденными выше и проиллюстрированными на рис. 1, в отношении требования для всех EAA поддерживать увеличение. Вместо этого, поскольку распад мышечного белка уменьшился, доступность EAA также упала, что, в свою очередь, фактически снизило скорость синтеза мышечного белка.

    Являются ли анаболические сигнальные факторы ограничивающими скорость в постабсорбционном состоянии?

    Утверждение о том, что синтез мышечного белка стимулируется BCAA, по крайней мере частично, связано с наблюдением усиления внутриклеточной анаболической передачи сигналов, включая состояние активации ключевых факторов, участвующих в инициации синтеза белка [1].Теория о том, что активация внутриклеточных анаболических сигнальных факторов вызывает повышенную скорость синтеза мышечного белка, прочно вошла в современные концепции регуляции синтеза мышечного белка. Повышенная анаболическая передача сигналов в ответ на BCAA была приведена в качестве доказательства стимуляции синтеза мышечного белка даже в отсутствие измерения синтеза мышечного белка (например, [1]). Однако активация анаболических сигнальных путей может совпадать с повышенным синтезом мышечного белка только при наличии достаточного количества EAA, обеспечивающего необходимые предшественники для производства полноценного белка.

    Диссоциация состояния фосфорилирования сигнальных факторов и синтеза мышечного белка у людей была показана в различных обстоятельствах, когда доступность всех EAA ограничена. Например, повышение концентрации инсулина (например, в результате приема глюкозы) является мощным активатором анаболических сигнальных путей, но это не может увеличить мышечный FSR из-за дефицита EAA [19]. Напротив, потребление небольшого количества (3 г) EAA стимулирует синтез мышечного белка, не влияя на активность фактора инициации e.g., Akt, киназа S6 и 4E – BP1 [20]. Небольшое увеличение концентрации ЕАА в плазме не имело бы никакого эффекта, если бы синтез белка ограничивался состоянием активации факторов инициации. В упомянутых выше исследованиях, в которых BCAA вводили внутривенно, разумно предположить, что такое большое увеличение концентрации BCAA могло активировать сигнальные факторы, но синтез мышечного белка фактически снизился из-за отсутствия EAA в результате снижения расщепление белков.Таким образом, у людей введение ЕАА может увеличить синтез мышечного белка при отсутствии каких-либо изменений в активации факторов инициации, а активация факторов инициации при отсутствии потребления всех ЕАА не влияет на синтез мышечного белка. Эти результаты можно интерпретировать только как демонстрацию того, что ограничивающий скорость контроль синтеза белка базальных мышц у людей — это доступность всех EAA, а не активность анаболического сигнального фактора. Этот вывод ставит под сомнение роль пищевых добавок, содержащих только BCAA, как стимуляторов синтеза мышечного белка.

    Когда все доказательства и теории рассматриваются вместе, можно сделать вывод об отсутствии достоверных доказательств того, что прием одной пищевой добавки с BCAA приводит к физиологически значимой стимуляции мышечного белка. Фактически, имеющиеся данные указывают на то, что BCAA действительно снижают синтез мышечного белка. Все EAA должны быть доступны в изобилии, чтобы усиление анаболической передачи сигналов приводило к ускоренному синтезу мышечного белка.

    Одновременное употребление BCAA с другими питательными веществами

    В центре внимания этого обзора была реакция только на BCAA, поскольку это логическая цель пищевых добавок BCAA.Как и в случае потребления только BCAA, существует ограниченное количество исследований совместного приема BCAA с другими питательными веществами. Когда BCAA или изоназотная смесь треонина, метионина и гистидина вводились людям вместе с углеводами, скорость синтеза мышечного белка снижалась одинаково в обеих группах, что указывает на отсутствие уникальной роли BCAA [21]. Точно так же потребление смеси BCAA с углеводами после упражнений с отягощениями не увеличивало анаболические сигнальные факторы в большей степени, чем одни углеводы [22].Таким образом, имеющиеся данные не поддерживают идею об особом анаболическом эффекте BCAA при приеме с углеводами.

    В отличие от отсутствия взаимодействия между BCAA и углеводами, BCAA могут усиливать анаболический эффект белковой пищи. Например, добавление 5 г BCAA к напитку, содержащему 6,25 г сывороточного протеина, увеличивало синтез мышечного протеина до уровня, сопоставимого с уровнем, вызываемым 25 г сывороточного протеина [23]. Этот результат предполагает, что один или несколько BCAA могут ограничивать скорость стимуляции синтеза мышечного белка сывороточным белком или что дополнительные BCAA индуцируют больший потенциал анаболического ответа мышц на сывороточный белок за счет активации факторов инициации.В любом случае реакция BCAA в сочетании с интактным белком — это другая проблема, чем эффект только BCAA, поскольку интактный белок обеспечивает все EAA, необходимые для производства интактного белка.

    Индивидуальные эффекты лейцина, валина и изолейцина

    В этой статье мы рассмотрели только реакцию на смеси BCAA. Ответы на отдельные BCAA (например, лейцин, валин или изолейцин) могут отличаться от комбинации этих трех по нескольким причинам.Доказательства указывают на то, что лейцин сам по себе может вызывать анаболический ответ (например, [24]), в то время как таких данных не существует для изолейцина или валина. Таким образом, можно было ожидать, что один лейцин будет более эффективным, чем комбинация всех BCAA. Однако есть два существенных ограничения пищевой добавки, содержащей только лейцин. Во-первых, те же проблемы, которые ограничивают степень стимуляции синтеза мышечного белка только BCAA в отношении доступности других EAA, необходимых для производства неповрежденного мышечного белка, также ограничивают ответ только на лейцин.Во-вторых, повышение концентрации лейцина в плазме активирует метаболический путь, который окисляет все BCAA. В результате прием одного лейцина приводит к снижению плазменных концентраций валина и изолейцина. Следовательно, доступность валина и изолейцина может стать ограничивающей для синтеза мышечного белка, когда потребляется только лейцин. Возможно, поэтому долгосрочные исследования результатов с добавлением лейцина в рацион не дали положительных результатов [25].Основное обоснование для диетической добавки, содержащей все BCAA, а не только лейцина, состоит в том, чтобы преодолеть снижение концентраций валина и изолейцина в плазме, которое могло бы произойти при приеме только лейцина.

    В то время как пищевая добавка со всеми BCAA преодолевает снижение концентрации, вызванное потреблением только лейцина, добавление валина и изолейцина, тем не менее, может ограничивать эффективность одного лейцина из-за конкуренции за перенос в мышечные клетки.Все BCAA активно транспортируются в клетки, включая мышечные, с помощью одной и той же транспортной системы.