Что такое углеводы определение по биологии: углеводы — урок. Биология, Общие биологические закономерности (9–11 класс).

Содержание

углеводы — урок. Биология, Общие биологические закономерности (9–11 класс).

Углеводы, или сахариды, — одна из основных групп органических соединений. Они входят в состав клеток всех живых организмов.

Основная функция углеводов — энергетическая (при расщеплении и окислении молекул углеводов выделяется энергия, которая обеспечивает жизнедеятельность организма). При избытке углеводов они накапливаются в клетке в качестве запасных веществ (крахмал, гликоген) и при необходимости используются организмом в качестве источника энергии. Углеводы также используются и в качестве строительного материала.

 

Общая формула углеводов:

Cn(h3O)m.

Углеводы состоят из углерода, водорода и кислорода.

В состав производных углеводов могут входить и другие элементы.

 

7319273.png

Растворимые в воде углеводы. Моносахариды и дисахариды

Пример:

из моносахаридов наибольшее значение для живых организмов имеют рибоза, дезоксирибоза, глюкоза, фруктоза, галактоза.

Глюкоза — основной источник энергии для клеточного дыхания.

Фруктоза — составная часть нектара цветов и фруктовых соков.

Рибоза и дезоксирибоза — структурные элементы нуклеотидов, являющихся мономерами нуклеиновых кислот (РНК и ДНК).
Дисахариды образуются путём соединения двух молекул моносахаридов и по своим свойствам близки к моносахаридам. Например, и те и другие хорошо растворимы в воде и имеют сладкий вкус.

Пример:

сахароза (тростниковый сахар), мальтоза (солодовый сахар), лактоза (молочный сахар) — дисахариды, образовавшиеся в результате слияния двух молекул моносахаридов:

сахароза (глюкоза \(+\) фруктоза) — основной продукт фотосинтеза, транспортируемый в растениях.

Лактоза (глюкоза \(+\) галактоза) — входит в состав молока млекопитающих.

Мальтоза (глюкоза \(+\) глюкоза) — источник энергии в прорастающих семенах.

Функции растворимых углеводов: транспортная, защитная, сигнальная, энергетическая.

Нерастворимые в воде полисахариды

Полисахариды состоят из большого числа моносахаридов. С увеличением количества мономеров растворимость полисахаридов уменьшается и сладкий вкус исчезает.

 

Пример:

полимерные углеводы: крахмал, гликоген, целлюлоза, хитин.

Функции полимерных углеводов: структурная, запасающая, энергетическая, защитная.
Крахмал состоит из разветвлённых спирализованных молекул, образующих запасные вещества в тканях растений.

Целлюлоза является важным структурным компонентом клеточных стенок грибов и растений.

Целлюлоза нерастворима в воде и обладает высокой прочностью.

Хитин состоит из аминопроизводных глюкозы, входит в состав клеточных стенок некоторых грибов и формирует наружный скелет членистоногих животных.
Гликоген — запасное вещество животной клетки.

Известны также сложные полисахариды, выполняющие структурные функции в опорных тканях животных (они входят в состав межклеточного вещества кожи, сухожилий, хрящей, придавая им прочность и эластичность).

Источники:

Каменский А. А., Криксунов Е. А., Пасечник В. В. Биология. 9 класс // ДРОФА.
Каменский А. А., Криксунов Е. А., Пасечник В. В. Биология. Общая биология (базовый уровень) 10–11 класс // ДРОФА.

Лернер Г. И. Биология: Полный справочник для подготовки к ЕГЭ: АСТ, Астрель.

http://www.bestreferat.ru/referat-100195.html

функции, классификация, продукты, строение, свойства, калорийность и норма в день

Содержание статьи:

  1. Что такое углеводы
  2. Функции углеводов в организме
  3. Классификация
  4. Простые углеводы
  5. Сложные углеводы
  6. Быстрые углеводы
  7. Медленные углеводы
  8. Строение углеводов
  9. Состав
  10. Свойства углеводов
  11. Переваривание
  12. Обмен углеводов в организме
  13. Продукты богатые углеводами
  14. Норма углеводов в день для организма
  15. Калорийность

Углеводы представляют собой натуральные органические вещества. В их формуле присутствуют углерод и вода. Благодаря этим элементам организм черпает энергию, которая требуется для поддержания нормальной работы. В зависимости от химической структуры углеводы бывают простыми и сложными.

Углеводы

Что такое углеводы

Углеводы — это основной ингредиент большинства пищевых продуктов, который служит источником энергии для человеческого организма. В зависимости от числа структурных единиц углеводы бывают простыми и сложными.

Первую категорию также называют быстрыми углеводами. Они являются легкоусвояемыми и приводят к быстрому увеличению содержания сахара в крови. Это значит, что для веществ характерен высокий гликемический индекс.

Такие элементы провоцируют нарушение метаболизма и становятся причиной увеличения массы тела. Систематическое употребление пищи, содержащей простые углеводы, не только приводит к ожирению, но и вызывает много других заболеваний.

Сложные углеводы, к которым относят крахмал и клетчатку, включают много связанных сахаридов. В их составе присутствует большое количество структурных элементов. Еда с такими углеводами считается очень полезной. В процессе переваривания она постепенно насыщает организм энергией. Это дает длительное чувство сытости.

Функции углеводов в организме

Ключевая функция углеводов в организме кроется в их трансформации в энергию. АТФ, который представляет собой универсальный источник энергии, содержит моносахарид рибозу. Формирование АТФ происходит вследствие гликолиза. Этот процесс заключается в окислении и распаде глюкозы на пировиноградную кислоту.

Гликолиз осуществляется в несколько стадий. Углеводы окисляются до воды и углекислого газа. Этот процесс сопровождается высвобождением энергии.

К основным функциям углеводов относят следующее:

  1. Структурная. Полисахариды представляют собой материал для опорных элементов. Целлюлоза, которая входит в структуру клеточных стенок, дает растениям жесткость. В составе грибных клеток присутствует хитин.
  2. Энергетическая. Углеводы представляют собой основной источник энергии. Расщепление 1 г углеводов позволяет высвободить 17,6 кДж энергии.
  3. Защитная. Из этих элементов состоят шипы и колючки растений.
  4. Запасающая.
    Углеводы запасаются в виде крахмала в структуре растений и гликогена у животных. При дефиците энергии эти вещества расщепляются до глюкозы.
  5. Осмотическая. Вещества способствуют регулированию осмотического давления.
  6. Рецепторная. Элементы присутствуют в составе клеточных рецепторов.

Отдельные углеводы формируют сложные структуры с белковыми элементами и липидами. В результате образуются гликопротеины и гликолипиды. Эти элементы присутствуют в составе мембран клеток.

Классификация углеводов

Классификация углеводов

Углеводы имеют множество разновидностей. Это обязательно стоит учитывать при составлении пищевого рациона. Классификация углеводов делится на простые и сложные или быстрые и медленные.

К простым или быстрым углеводам относят следующие:

  1. Моносахариды. В эту категорию входят галактоза, фруктоза, глюкоза. Данные компоненты присутствуют в ягодах, фруктах, меде. Такие вещества быстро усваиваются и резко увеличивают содержание сахара в крови. Как следствие, в тканях образуется гликоген, который требуется для энергии. При ее избытке вещества образуют жировые отложения. Чтобы избежать негативных последствий, количество моносахаридов должно составлять не больше 25-35 % общего объема углеводов, которые были съедены в течение дня.
  2. Дисахариды. К ним преимущественно относят сахарозу, которую включает обычный сахар, и мальтозу. Этот компонент присутствует в солоде, патоке, меде. Также он имеется в составе молочного сахара.

К сложным или медленным углеводам относят полисахариды. Эти вещества включают большое количество моносахаридов. Они усваиваются долгое время и обладают менее сладким вкусом, чем простые углеводы.

К основным полисахаридам относят следующее:

  1. Крахмал и гликоген. Эти вещества присутствуют в злаках, бобовых, картофеле, кукурузе.
  2. Клетчатка. Элемент содержится в крупах, семечках, овощах, фруктах, отрубях.
  3. Целлюлоза. Компонент включают салатные листья, яблоки, груши, морковь.
  4. Пектин. Вещество присутствует в моркови, капусте, цитрусовых фруктах, клубнике.
  5. Инулин. Элемент содержится в цикории, луке, ячмене, чесноке.

Основное достоинство сложных углеводов заключается в медленном насыщении организма. Благодаря этому чувство голода не возникает раньше времени.

Простые углеводы

Простые углеводы

Для этих углеводов характерна простая структура. Благодаря этому они быстро усваиваются в организме. При недостатке физических нагрузок вещества повышают содержание сахара в крови. После этого он быстро падает, что провоцирует чувство голода. Неистраченные углеводы трансформируются в жировые отложения. При этом их недостаток вызывает усталость и повышенную сонливость.

Простые углеводы делятся на 2 категории – моносахариды и дисахариды.

К моносахаридам относятся:

  • глюкоза — она входит в состав большинства фруктов и ягод. Также компонент присутствует в меде и зеленых фрагментах растений;
  • фруктоза — это вещество присутствует в меде, ягодах, фруктах. Также оно входит в семена отдельных растений;
  • галактоза — это единственный моносахарид, который имеет животное происхождение. Он входит в состав лактозы, или молочного сахара.

Наиболее значимыми для питания человека считаются дисахариды. В составе молекулы присутствует глюкоза. Вторым сахаром может быть фруктоза, галактоза или глюкоза.

Существуют такие виды дисахаридов:

  • сахароза — она включает глюкозу и фруктозу. В эту категорию входит сахар из тростника или свеклы;
  • мальтоза — вещество содержит 2 остатка глюкозы. Оно присутствует в солодковом сахаре;
  • лактоза — элемент включает глюкозу и галактозу и содержится в молоке млекопитающих.

Список полезных продуктов, в которых присутствуют быстрые углеводы:

При этом есть вредные продукты, которые следует полностью исключить.

К ним относятся:

  • выпечка из муки высшего сорта;
  • конфеты;
  • сладкие газированные напитки;
  • снеки;
  • спиртные напитки;
  • торты, вафли, печенье.

Сложные углеводы

Сложные углеводы

В основе этих продуктов лежат полисахариды – крахмал и целлюлоза. Такие вещества обеспечивают нормальное пищеварение и на долгое время насыщают человека.

К списку продуктов, которые содержат много сложных углеводов, относят следующее:

  • все овощи – исключением являются картофель и тыква;
  • цитрусовые фрукты;
  • ягоды;
  • яблоки и груши;
  • абрикосы;
  • пшено, перловка, гречка, овсянка;
  • бобовые.

Из напитков в эту категорию входят несладкий чай и кофе. Также немного сложных углеводов присутствует в мясе и рыбе. Они имеются в яйцах, кефире, твороге.

Быстрые углеводы

Быстрые углеводы

Быстрые углеводы считаются простыми и включают всего 1-2 молекулы:

  • 1 молекулу содержат моносахариды;
  • 2 молекулы присутствует в составе дисахаридов.

Для всех быстрых углеводов характерен высокий гликемический индекс. Он превышает 70. Такие вещества отличаются сладким вкусом и прекрасно растворяются в воде.

Расщепление простых углеводов начинается еще в полости рта. Они очень быстро проникают в кровь. Уже через несколько минут после употребления существенно увеличивается уровень глюкозы. При этом он держится на высокой отметке не более 30-40 минут. Затем так же внезапно снижается.

Быстрые углеводы требуются для восстановления запаса энергии после сложных физических нагрузок или стрессов. Они способствуют выведению человека из гипогликемической комы.

Однако постоянно употреблять такие вещества не следует. Это провоцирует истощение поджелудочной железы и заставляет ее функционировать в стрессовом режиме. Именно избыток простых углеводов провоцирует развитие сахарного диабета 2 типа. При употреблении простых углеводов на ночь они трансформируются в жиры.

К продуктам с высоким гликемическим индексом относят следующее:

  • сахар, мед;
  • запеченный картофель, пюре;
  • отварная морковь и тыква;
  • бананы, дыни, арбузы, ананасы;
  • кондитерские изделия;
  • финики;
  • хлебобулочные изделия.

Медленные углеводы

Медленные углеводы

Медленные углеводы также называются сложными. Они включают 3 и больше молекул. Потому для этих веществ характерно медленное расщепление. Обычно они всасываются в кишечнике. К сложным углеводам относят декстрин, крахмал, целлюлозу, гликоген, глюкоманнан.

Употребление медленных углеводов способствует плавному поступлению глюкозы в организм человека. При этом не наблюдается пиков или скачков. Именно сложные углеводы насыщают человека на долгое время, поддерживают стабильное настроение и делают более уравновешенным.

Гликемический индекс таких продуктов находится в пределах 0-40.

К ним стоит отнести следующее:

  • макароны из твердых сортов пшеницы;
  • коричневый рис, ячмень, перловка, гречка, пшено;
  • бобовые;
  • фрукты – персики, апельсины, вишни, яблоки, груши;
  • овощи и зелень – лук, шпинат, кабачки, перец, томаты, капуста;
  • грибы.

Строение углеводов

Строение углеводов

Строение углеводов включает несколько карбонильных и гидроксильных групп.

В зависимости от структуры вещества делят на 3 категории:

  • моносахариды;
  • олигосахариды;
  • полисахариды.

Моносахариды представляют собой простейшие сахара, которые включают всего 1 молекулу. Они имеют несколько групп, которые отличаются по количеству атомов углерода в молекуле. Моносахариды, в составе которых присутствует 3 атома углерода, называют триозами. Если в составе присутствует 5 атомов, их именуют пентозами, если 6 – гексозами.

Наиболее ценными для живых организмов считаются пентозы, которые присутствуют в составе нуклеиновых кислот. Также большое значение имеют гексозы, из которых состоят полисахариды.

Олигосахариды содержат 2-10 структурных элементов.

В зависимости от количества выделяют:

  • диозы;
  • триозы;
  • тетраозы;
  • пентасахариды;
  • гексасахариды.

Самыми значимыми считаются дисахариды, к которым относятся сахароза, мальтоза и лактоза, а также трисахариды. В эту категорию входят мелицитоза, рафиноза, мальтотриоза.

Олисахариды могут содержать однородные и неоднородные структуры.

В зависимости от этого выделяют следующие виды:

  • гомоолигосахариды – все молекулы обладают одинаковым строением;
  • гетероолигосахариды – молекулы отличаются по структуре.

Самыми сложными углеводами считаются полисахариды. Они включают множество моносахаридов – от 10 до нескольких тысяч.

К таким веществам относят следующее:

  • крахмал;
  • хитин;
  • гликоген;
  • целлюлоза.

Полисахариды имеют более жесткую структуру, чем олигосахариды и моносахариды. Они не растворяются в воде и не имеют сладкого вкуса.

Состав углеводов

Состав углеводов

Состав углеводов делят на следующие категории:

  1. Моносахариды – включают 1 мономерную единицу и не гидролизуются с появлением более простых углеводов. Мономеры отличаются разнообразием. Это обусловлено разницей в структуре. Обычно моносахариды живых организмов представляют собой кольцевые углеродные цепи, которые включают 5 или 6 атомов углерода. Самыми важными моносахаридами считаются рибоза и дезоксирибоза, которые присутствуют в составе нуклеиновых кислот. Также к ним относят глюкозу как источник энергии и фруктозу.
  2. Дисахариды – включают 2 мономерных единицы. Можно сказать, что они состоят из 2 моносахаридов. Вещества объединяются через гидроксильные группы. При этом происходит отщепление воды. Самым известным дисахаридом считается сахароза. Ее молекула включает остатки глюкозы и фруктозы. 2 остатка глюкозы входит в состав мальтозы.
  3. Полисахариды – включают больше 10 мономерных единиц. В эту категорию входят крахмал, хитин, целлюлоза и т.д. Крахмал и гликоген скапливаются в организмах как запасной питательный элемент. Крахмал имеет менее разветвленную структуру, чем гликоген. Целлюлоза формирует стенки клеток растений. За счет этого она реализует структурную и защитную функции. Аналогичные задачи решает хитин у грибов и животных.

Свойства углеводов

К основным свойствам углеводов стоит отнести следующее:

  1. Молекулярная масса. Среди углеводов можно встретить весьма простые элементы, молекулярная масса которых составляет примерно 200, и гигантские полимеры. Их молекулярная масса достигает нескольких миллионов.
  2. Растворимость в воде. Моносахариды легко растворяются в воде и образуют сиропы.
  3. Окисление. Этот процесс приводит к получению соответствующих кислот. К примеру, окисление глюкозы аммиачным раствором гидрата окиси серебра приводит к формированию глюконовой кислоты.
  4. Восстановление. При восстановлении сахаров удается получить многоатомные спирты. В роли восстановителя выступает водород в никеле, алюмогидрид лития и т.д.
  5. Алкилирование. Под этим термином понимают образование простых эфиров.
  6. Ацилирование. В это понятие включают образование сложных эфиров.

Переваривание углеводов

Переваривание углеводов

Из углеводов в человеческом организме преимущественно перевариваются полисахариды – крахмал из растительных продуктов и гликоген, который присутствует в животной пище.

Полисахариды расщепляются пищеварительными ферментами до структурных блоков – свободной D-глюкозы. Этот процесс происходит под воздействием амилазы слюны и сопровождается формированием смеси из мальтозы, глюкозы и олигосахаридов.

Переваривание углеводов продолжается и заканчивается в тонком кишечнике. На этот процесс влияет амилаза поджелудочной железы, которая попадает в двенадцатиперстную кишку.

Гидролиз дисахаридов запускают ферменты, которые присутствуют в наружном слое клеток эпителия, выстилающих тонкий кишечник. В эпителиальных клетках тонкого кишечника происходит частичная трансформация D-фруктозы, D-галактозы, D-маннозы в D-глюкозу. Смесь простых гексоз поглощается клетками эпителия и с током крови попадает в печень.

Обмен углеводов в организме

Обмен углеводов в организме

В основе обмена углеводов в организме человека, лежат ниже описанные процессы:

  1. Мозг не имеет запаса гликогена, потому ему постоянно требуется глюкоза. Углеводы являются единственным источником, который помогает покрывать энергетические расходы мозга. Именно мозговая ткань поглощает 70 % глюкозы, которая выделяется печенью.
  2. Мышечные ткани при активной работе получают из крови большое количество глюкозы. В них это вещество трансформируется в гликоген. При распаде гликогена появляется достаточное количество энергии для сокращения мышц.
  3. Содержание глюкозы в крови регулируют гормоны – глюкагон, соматотропин, кортизол, инсулин, адреналин. Инсулин способствует снижению содержания глюкозы в крови при ее повышении, упрощает ее попадание в клетки и обеспечивает отложение вещества в тканях в виде гликогена. При уменьшении параметров глюкозы в крови соматотропин, кортизол, адреналин и глюкагон тормозят захват глюкозы клетками. За счет этого гликоген трансформируется в глюкозу.

Продукты богатые углеводами

Продукты богатые углеводами

Ниже описаны продукты, богатые углеводами в больших количествах:

  1. Хлеб. Важным источником таких веществ, считается пшеничная мука. При этом стоит учитывать, что хлеб нужно употреблять в меру. В продукте из цельных зерен, помимо крахмала, присутствуют белки, минералы, витамины, жиры. Эти вещества очень полезны.
  2. Рис. В составе риса присутствует много углеводов и витаминов группы В. При этом диетологи советуют отдавать предпочтение нешлифованным сортам.
  3. Бобовые. Такие продукты отличаются высокой пищевой ценностью. Для них характерна твердая целлюлозная мембрана, поэтому важно уделить внимание правильному способу приготовления.
  4. Картофель. Этот продукт содержит чуть меньше углеводов – около 20 %. Оставшуюся часть занимает вода. Помимо этого, в составе имеются витамины и минералы.
  5. Зеленые овощи. Помимо сложных углеводов, такие продукты включают много витаминов. Особенно полезно есть овощи в свежем виде. Предпочтение нужно отдавать салату, перцу, зеленой фасоли, молодому горошку, капусте. Обязательно нужно употреблять шпинат, поскольку он содержит много железа.

Норма углеводов в день для организма

Норма углеводов в день для организма

Необходимость в углеводах зависит от интенсивности интеллектуальных и физических нагрузок. В среднем норма углеводов в день для организма составляет 300-500 г. Около 20 % может приходиться на углеводы, которые легко усваиваются.

Пожилым людям стоит употреблять максимум 300 г углеводов в сутки. При этом количество простых элементов не должно быть больше 15-20 %.

При наличии лишнего веса и других патологиях количество углеводов стоит ограничивать. При этом делать это следует постепенно. Благодаря этому организм сможет адаптироваться к изменению обменных процессов. Ограничение стоит начинать с 200-250 г в сутки. Через неделю объем углеводов допустимо сократить до 100 г.

Если резко уменьшать количество углеводов в течение долгого периода времени, есть риск развития разных нарушений.

К ним относят следующее:

  • снижение уровня сахара в крови;
  • общая слабость;
  • сильное снижение интеллектуальной и физической активности;
  • потеря веса;
  • нарушение метаболизма;
  • повышенная сонливость;
  • головокружения;
  • головные боли;
  • тремор рук;
  • ощущение голода;
  • рак толстого кишечника;
  • запоры.

Неприятные симптомы удается устранить после употребления сахара или других сладких продуктов. Однако, есть их следует дозированно. Это поможет избежать увеличения массы тела.

Для организма также вреден и избыток углеводов, особенно простых. Он приводит к повышению уровня сахара в крови. Как следствие, часть веществ не используется и приводит к скоплению жировых отложений. Это провоцирует сахарный диабет, кариес, атеросклероз. Также есть риск метеоризма, ожирения, болезней сердца и сосудов.

Калорийность углеводов

Калорийность углеводов

Калорийность углеводов зависит от конкретного продукта. В среднем 1 г углеводов содержит 4,1 Ккал или 17 кДж.

Углеводы – важные элементы, которые обеспечивают человеческий организм энергией. При этом они делятся на 2 основные категории – простые и сложные. Чтобы избежать проблем со здоровьем, предпочтение стоит отдавать сложным углеводам.

Углеводы | Биология

Органические соединения с общей формулой Cn(H2O)n называются углеводами, в зависимости от строения их подразделяют на простые и сложные. Углеводы — это многоатомные спирты, которые имеют двойную связь кислорода с углеродом и способны образовывать биополимеры. Сахара (моносахариды и олигосахариды) играют важную роль в обмене веществ, поскольку является источником энергии, а сложные углеводы — полисахариды — биологические полимеры, в организмах животных и растений выполняют структурную, защитную функции и способны откладываться про запас.

Простые углеводы, или моносахариды

Основой простых углеводов — моносахаридов (от греч. monos — один, единственный; sacchar — сахар), которые встречаются в клетках животных и растений, является углеродная цепь от 3 до 7 атомов, к которым присоединяются атомы водорода, кислорода и гидроксильные группы. При этом один из атомов углерода имеет двойную связь с атомом кислорода. Итак, моносахариды — это сложные многоатомные спирты. В состав простых углеводов, так же, как и в состав жиров входят только углерод, водород и кислород в соотношении (1C:2H:1O).

Для молекул моносахаридов присуща полярность, они растворяются в воде, а в твердом состоянии имеют вид кристаллов. Обычными шести-атомными моносахаридами, часто встречающимися в живых организмах является глюкоза и фруктоза.

Структурная формула глюкозы и фруктозы

По своему химическому составу эти два вещества одинаковы и имеют молекулярную формулу C6H12O6. Это означает, что эти два соединения являются изомерами (от греч. изос — одинаковый и мерос — часть), то есть различаются по характеру связей атомов в молекуле, имея при этом одинаковый состав атомов. Формулы глюкозы и фруктозы разные — в глюкозы двойная связь с атомом кислорода, образованная на первом атоме углеродной цепи, а в фруктозы — на втором.

Ключевую роль в метаболизме животных и растений играет глюкоза, которую еще называют виноградным сахаром. Именно этот углевод образуется у растений вследствие фотосинтеза и является первичным источником энергии в клетках животных и растений.

Глюкоза — важнейший компонент крови человека. Недостаточное количество этого углевода в крови приводит к нарушению деятельности мозга, обморокам и даже может привести к смерти. Кроме того, глюкоза — это исходный продукт для многих веществ, а потому является главным веществом биологического синтеза.

Фруктоза, или фруктовый сахар, также имеет большое значение для метаболизма растений и в свободном виде содержится в листьях и плодах. Это самый сладкий из сахаров. Фруктоза составляет более 50% всех веществ пчелиного меда и, как и глюкоза, является компонентом более сложных соединений, необходимых для клетки.

Сложные углеводы, или полисахариды

В определенных условиях моносахариды способны сочетаться друг с другом, выделяя при этом молекулу воды. Поэтому сложные углеводы, в отличие от простых, имеют другую общую формулу Cn(H2O)n-1. Олигоссахариды (от греч. олиго — малый и sacchar — сахар) могут содержать от двух до четырех остатков молекул моносахаридов. Самым распространенным олигосахаридом являются сахароза (тростниковый сахар), состоящий из остатков фруктозы и глюкозы. Это и есть наш бытовой сахар.

Молекула сахарозы

В естественном виде сахароза содержится только в растениях, где исполняет функцию транспортировки молекул моносахаридов. Кроме сахарозы в тканях растений содержатся и другие дисахариды, в частности — мальтоза, состоящий из двух молекул глюкозы.

В молоке млекопитающих содержится лактоза, в состав которой входят глюкоза и еще один моносахарид — галактоза, который также является изомером глюкозы. Все указанные дисахариды имеют ту же молекулярную формулу — C12H22O11 но у них разные физические и химические свойства.

Моно- и олигосахариды, имеющих общее название сахара, характеризуются сладким вкусом, растворяются в воде и способны в сухом состоянии кристаллизоваться.

Особую группу углеводов составляют полисахариды (от греч. поли — много и sacchar — сахар). Это одна из разновидностей биологических полимеров, мономерами которых являются различные моносахариды. Остатки моносахаридов в такой молекуле собраны в одну длинную разветвленную цепь. Полисахариды имеют совсем другие физические свойства, чем сахара. Они не способны растворяться в воде и в сухом виде напоминают порошок. Молекулярная масса полисахаридов может достигать тысяч и даже миллионов. Поэтому их относят к группе биологических макромолекул.

Молекула крахмала

Функции углеводов

Функции, выполняемые углеводами в организмах живых существ, весьма разнообразны, мы рассмотрим лишь самые главные из них:

Энергетическая функция

Углеводы — это универсальный и важный источник энергии в клетке. Любая функция любого организма так или иначе связана с окислением углеводов в CO2 и H2O. В результате полного расщепления 1 г любого углевода выделяется 17,6 кДж энергии.

Запасающая функция

Глюкоза хорошо растворяется в воде и легко проникает сквозь клеточную мембрану, поэтому накопить ее в клетке невозможно. Избыток глюкозы в клетке превращается в нерастворимые в воде полисахариды, которые в твердом состоянии откладываются в цитоплазме. У растений основным резервным углеводом является крахмал, образованный из остатков молекул глюкозы. Недостаток глюкозы в организме при необходимости восполняется путем гидролиза крахмала.

У животных основным резервным углеводом является полисахарид гликоген. Он, как и крахмал, состоит из молекул глюкозы, но имеет более разветвленную строение и лучше растворяется в воде.

Опорная (структурная) функция

Клетки растений покрывает твердая оболочка, построенная из полисахарида целлюлозы, или клетчатки. Она так же, как и резервные углеводы — крахмал и гликоген, построена из молекул глюкозы, которые, однако, имеют другую пространственную организацию молекул. Благодаря этому связи между такими молекулами глюкозы значительно крепче. Целлюлоза не только не растворяется в воде, но и не переваривается большинством животных, то есть не распадается до молекул глюкозы. Способность переваривать целлюлозу присуща бактериям и грибам, благодаря которым происходит разложение отмерших растений.

Хитин, который образует наружный скелет насекомых и клеточную оболочку грибов, также относится к группе опорных полисахаридов. Он состоит из особых моносахаридов, содержащих атомы азота, и имеет кристаллическую структуру, а потому является веществом более химически инертным, чем целлюлоза.

Иммунная функция

Полисахариды построены не только из остатков моносахаридов, но и из других молекул, в частности остатков серной кислоты и могут образовывать комплексы с белками. Эти соединения углеводов с белками играют ключевую роль в сочетании клеток друг с другом и в распознавании организмом собственных клеток. Установлено, что молекулы полисахаридов как бы наполовину встроены в наружную клеточную мембрану — наружу выступают только отдельные группы атомов. Набор и характер этих групп специфический для каждой особи. Именно благодаря этому клетки любого организма легко «определяют» постороннюю клетку, например бактерию, которая попала в него.

Защитная функция

Некоторые полисахариды, имеющие сложное строение, защищают организм от внешних воздействий. К ним относится камедь — прозрачная смолистое вещество янтарного цвета, которая выделяется из трещин ветвей и зеленых плодов вишен и абрикосов. Животные также имеют свои защитные полисахариды.

Особые углеводы — пектины, входящие в состав клеточной стенки растений, они накапливаются в большом количестве в плодах крыжовника или яблоках. Пектины способны образовывать прочные соединения с атомами тяжелых металлов. Это их свойство широко используют в медицине для выведения из организма атомов свинца или ртути, которые являются ядовитыми для многих животных.

 

Углеводы как органические молекулы

Углеводы – это органические молекулы, которые содержат углерод, водород и кислород в мольном соотношении 1:2:1. Элементы в них объединяются в карбонильную и карбоксильную группы. Их общая формула (CH2O) n.


Так как первые изученные углеводы содержали водорода и кислорода столько же, сколько и в молекуле воды, они и получили своё название (углерод + вода). Вместе с тем есть молекулы, у которых соотношение указанных в формуле химических элементов иное, а некоторые, кроме того, содержат атомы азота, фосфора или серы, но подробная классификация углеводов рассматривается ниже. Источником углеводов является растения, там они синтезируются в процессе фотосинтеза.

Хлеб - углеводы фото

Так как углеводы содержат много углеводородных связей (C-H), высвобождающих энергию при окислении, они хорошо подходят для хранения энергии. Эти вещества входят в состав всех живых организмов. В клетках животных их содержание не превышает 10 % сухой массы, в клетках растений их значительно больше – до 90 %.

Классификация углеводов

Углеводы существуют в нескольких формах: моносахаридов, олигосахаридов (в том числе дисахаридов) и полисахаридов.

Углеводы моносахариды

Самые простые углеводы – моносахариды (греч. μόνος «единственный», лат. saccharum «сахар»), или простые сахара. Могут включать от 3 атомов углерода, но те, что играют роль в запасе энергии, содержат 6 атомов углерода:  C6H12O6 или (CH2O)6.

Углеводы: структура моносахаридов фотоСтруктура моносахаридов.

Свойства моносахаридов:

  • бесцветность;
  • твёрдость кристаллической решётки;
  • хорошая растворимость в воде;
  • способность к кристаллизации;
  • сладкий вкус,
  • представление в форме α и β-изомеров.

По количеству атомов углерода в составе молекул, моносахариды делятся на несколько групп:

  • триозы (C3),
  • тетрозы (C4),
  • пентозы (C5),
  • гексозы (C6),
  • гептозы (C7).

Важнейшими из них являются пентозы и гексозы.

Из тетроз важной является эритроза – один из промежуточных продуктов фотосинтеза растений.

Широко распространены в живом мире пентозы (пятиуглеродные сахара). Эта группа углеводов включает такие важные вещества как рибоза (C5H10O4) и дезоксирибоза (C5H10O5) – сахара, входящие в состав нуклеотидов – мономеров нуклеиновых кислот (ДНК и РНК). Дезоксирибоза отличается от рибозы тем, что при втором атоме углерода имеет атом водорода, а не гидроксильную группу.

Углеводы: структурные формулы рибозы и дезоксирибозы фото

Из гексоз наиболее распространены глюкоза, фруктоза и галактоза. Это стериоизомеры с общей формулой C6H12O6.

Глюкоза – виноградный сахар, в свободном состоянии встречается как в растениях, так и в организмах животных. В зависимости от ориентации карбонильной группы (C = O) при замкнутом кольце, глюкоза может существовать в двух различных формах: альфа (α) и бета (β). У α-глюкозы гидроксильная группа расположена под плоскостью кольца при первом атоме углерода, а у β-глюкозы над плоскостью. Глюкоза — это:

  • важнейший источник энергии для всех видов работ в клетке;
  • мономер многих олиго- и полисахаридов;
  • необходимый компонент крови. Снижение её концентрации ведёт к нарушению работы нервных и мышечных клеток, что может сопровождаться судорогами и обмороком. Уровень содержания глюкозы в крови регулируется нервно-гуморальной системой;
  • составная часть почти всех тканей и органов, там она регулирует осмотическое давление;
  • помощник печени в выполнении барьерной роли против токсинов.

Углеводы: глюкоза фото

Фруктоза тоже очень распространена в природе. Отличается от глюкозы положением карбонильного углерода (C = O). Служит мономером олигосахаридов. Большая её часть находится в плодах, поэтому её ещё называют фруктовым сахаром. Много фруктозы в сахарной свёкле и мёде.

Путь её распада в организме короче, что имеет большое значение в питании больных сахарным диабетом, когда глюкоза слабо усваивается клетками.

Углеводы: фруктоза во фруктах фото

Мёд, несмотря на многочисленные советы употреблять его вместо сахара, не является идеальным источником углеводов. Он содержит сахар в чистом виде.

Мёд образуется при ферментативном гидролизе цветочного нектара в пищеварительном тракте пчелы и содержит примерно равные количества свободных глюкозы, фруктозы и дисахарид сахарозу.

Фруктоза в мёде фото

Сахар, приносящий пользу, находится в молодых овощах, ягодах, фруктах. Вредный для питания сахар – булочки, торты, пирожные, печенья, сладкие газировки, мороженое. В день в идеале можно съедать 50 г сладкого во время обеда или на полдник в качестве десерта.


 

Галактоза — пространственный изомер глюкозы, отличающийся только расположением гидроксильной группы и водорода около четвёртого атома углерода. Содержится в животных, растениях и некоторых микроорганизмах. Она входит в состав лактозы — молочного сахара, а также в состав некоторых полисахаридов, например лактулозы. В печени и в других органах галактоза превращается в глюкозу.


Различия в структуре этих изомеров влияют на их функции. Их можно различить уже на вкус: фруктоза, например, намного слаще глюкозы. От строения их кольца или цепи зависит и способность быть частью какого-либо полимера.

Углеводы олигосахариды

Олигосахариды (от греч. ὀλίγος — немногий) — углеводы, образующиеся в результате реакции конденсации между несколькими (от двух до 10) молекулами моносахаридов. В зависимости от числа молекул моносахаридов, различают: дисахариды, трисахариды, тетрасахариды и т. д. Наиболее распространены среди них дисахариды. Свойства олигосахаридов:

  • растворяются в воде;
  • мало растворяются в низших спиртах;
  • почти не растворяются в других обычных растворителях;
  • белые или бесцветные;
  • кристаллизуются, но не все, некоторые существуют в форме некристаллических сиропов;
  • их сладкий вкус уменьшается по мере увеличения числа остатков моносахаридов.

Связь, образующаяся между двумя моносахаридами, называется гликозидной (тип ковалентной связи, реакция конденсации).

Гликозидная связь фотоОбразование гликозидных связей
Углеводы дисахариды

В растениях и многих других организмах моносахариды трансформируется в дисахариды — транспортную форму, предназначенную для удобства перемещения внутри организма. В таком виде она труднее расщепляется и может быть доставлена в нужные места.

Дисахариды, образуется путём связывания двух моносахаридов (др. греч. δuο — два и σaκχαρον — сахар) гликозидной связью. Ферменты, способные разорвать эту связь присутствуют, как правило, только в тканях, которые используют глюкозу. Транспортные формы различаются в зависимости от того из каких моносахаридов состоят данные дисахариды. Кроме глюкозы они могут включать фруктозу и галактозу.

 

Важнейшие дисахариды фото

При соединении остатка глюкозы с её структурным изомером фруктозой образуется дисахарид сахароза (тростниковый, или свекловичный сахар). Сахароза — самая распространённая форма транспортных углеводов, которая хранится в клетках растений (в семенах, ягодах, корнях, клубнях, плодах). Играет важную роль в питании животных и человека. В растениях сахароза служит растворимым резервным углеводом, а также транспортной формой продуктов фотосинтеза, которая легко переносится по растению.

Это привычный нам бытовой сахар, который в промышленности вырабатывают из сахарного тростника (стебли содержат 10-18%) или сахарной свёклы (корнеплоды — до 20%).

Уборка сахарного тростника фотоУборка сахарного тростника
Автор: Siebrand

Связывание глюкозы со стериоизомером галактозой приводит к появлению дисахарида лактозы, или молочного сахара. Она есть в молоке всех млекопитающих (2-8,5%), при её помощи звери и человек обеспечивают энергией своё потомство. Взрослые значительно уменьшают потребление молока, так как в их организме нет фермента, нужного для расщепления лактозы. Лактоза используется в микробиологической промышленности для приготовления питательной среды.

Мальтоза, или солодовый сахар — дисахарид, состоящий из двух остатков глюкозы. Концентрируется в прорастающих семенах злаков, в томатах и нектаре некоторых растений. Это основной структурный элемент крахмала и гликогена. Мальтоза гидролизируется на две молекулы глюкозы под действием фермента мальтазы.

Углеводы полисахариды

Полисахариды — это углеводы, образующиеся в результате реакции поликонденсации множества (нескольких десятков и более) молекул моносахаридов. Полисахариды (от греч. полис — много) могут включать остатки одинаковых или разных моносахаридов.

Свойства полисахаридов:

  • не растворяются или плохо растворяются в воде;
  • не образуют ясно оформленных кристаллов;
  • не имеют сладкого вкуса.

Полисахариды фото

Многие микроорганизмы легко разлагают до глюкозы крахмал, но большинство из них не способны переварить целлюлозу или другие полисахариды, такие как хитин. Эти углеводы могут усваиваться только некоторыми бактериями и протистами. Жвачные животные и термиты, к примеру, используют микроорганизмы для переваривания целлюлозы.

Даже при том, что эти сложные углеводы не очень легко усваиваемы, они важны для питания. Их называют пищевыми волокнами, так как они улучшают пищеварение и способствуют лучшей перистальтике кишечника. Основная функция пищевых волокон — способствовать всасыванию других питательных веществ.

Полисахариды различаются между собой составом мономеров, длиной и степенью разветвленности цепей. Они могут иметь линейную неразветвленную (целлюлоза, хитин), разветвленную (гликоген) и смешанную структуру (крахмал представляет собой смесь полисахаридов — примерно на 80 % (по массе) он состоит из разветвленного амилопектина и на 20 % из линейного полисахарида амилозы).

В функциональном отношении различают полисахариды резервного, структурного и защитного назначения. Типичные резервные полисахариды — крахмал и гликоген. К структурным полисахаридам относят целлюлозу (клетчатку). Защитную функцию у животных обеспечивают гепарин и гиалуроновая кислота.

Крахмал и гликоген

Крахмал и гликоген запасают метаболическую энергию.

Крахмал (C6H10O5)n — полимер, мономером которого является α-глюкоза. Состоит из смеси других полисахаридов — амилозы и амилопектина. Амилоза имеет вид длинной цепочки, связанной в спираль, именно такая конфигурация обеспечивает синюю окраску растворимого крахмала при добавлении йода. Амилопектин — древовидно разветвлённая цепь, он в присутствии йода окрашиваются в коричневый цвет. Крахмал — основной резервный углевод растений, являющийся одним из продуктов фотосинтеза. Накапливается в хлоропластах листьев, семенах, клубнях, корневищах, луковицах, откладывается в клетках в виде крахмальных зёрен в специальных органеллых — амилопластах. Содержание крахмала:

  • в зерновках риса — до 86%;
  • пшеницы — до 75%;
  • в клубнях картофеля — до 25%.

Крахмал фото

Крахмал — основной углевод пищи человека, его расщепляет фермент амилаза. Крахмальные зёрна практически не растворяются в воде, но амилоза набухает при её нагревании, тогда как амилопектин не изменяется даже при очень длительном кипячении.

Структура крахмала фото

Гликоген (C6H10O5)n — полисахарид, состоящий из 30 000 остатков α-глюкозы. Его цепочки ветвятся сильнее, чем у крахмала. По типу ветвления он похож на компонент крахмала амилопектин, поэтому его часто называют животным крахмалом. Он не даёт синего окрашивания при контакте с йодом. Гликоген — это запасной углевод животных. Накапливается в печени (до 20%) и в мышцах (4%), в небольшом количестве он найден в почках, клетках мозга и лейкоцитах крови. Чаще всего используется как источник глюкозы для восполнения её запасов в крови. Есть гликоген и в клетках грибов, в том числе и дрожжей. В отличие от крахмала гликоген растворим при комнатной температуре.

Целлюлоза

Целлюлоза — полимер, в котором мономер глюкоза соединяется между собой по типу β. Это основной структурный полисахарид клеточной стенки растений, в нём аккумулируется около 50% всего углерода биосферы. Содержание целлюлозы в древесине — до 50%, в волокнах семян хлопчатника — до 98%.

Молекулы целлюлозы не ветвятся, а собираются в очень прочные волокна из параллельно уложенных цепочек, связанных в пучки водородными соединениями. Они нерастворимы в воде, внешне похожи на часть крахмала — амилозу, с одним отличием — цепи целлюлозы, соединённые по β типу в большинстве живых организмах не расщепляются, так как у них отсутствует нужный для этого фермент целлюлаза. Из-за того, что целлюлоза не может быть разорвана в пищеварительном тракте животных, она может работать как биологический структурный материал. Но некоторым жвачным, например, коровам, переваривать целлюлозу помогают симбиотические микроорганизмы.

Целлюлоза является пищей не только для коров, но и для грибов, микроорганизмов, некоторых протист и животных (термиты). Микроорганизмы, способные расщеплять целлюлозу, входят также в состав микрофлоры толстого кишечника человека.

Хитин

Хитин (фр. chitine, от др.-греч. χιτών: хитон — одежда, кожа, оболочка) — структурный полисахарид, найденный в кутикуле членистоногих и ряда других беспозвоночных (червей, кишечнополостных), клеточных оболочках некоторых грибов и протист. Кроме углерода, водорода и кислорода в его молекулах содержится азот (C8H13NO5)n, этим он отличается от целлюлозы. Состоит из остатков N-ацетилглюкозамина, связанных между собой β-гликозидными связями. Усваивать хитин способны немногие организмы, например некоторые бактерии. Но многие существа продуцируют фермент хитиназу, вероятно в качестве защиты от плесени.

Хитиновый покров насекомых фото

Функции углеводов

В живых организмах углеводы выполняют различные функции, основные из них — энергетическая, запасающая и структурная.

  • Энергетическая функция состоит в том, что углеводы под влиянием ферментов легко расщепляются и окисляются с выделением энергии. При полном окислении 1 г углеводов высвобождается 17,6 кДж энергии. Конечные продукты окисления углеводов — углекислый газ и вода.

Важнейшая роль углеводов в энергетическом обмене живых организмов связана с их способностью расщепляться как при наличии кислорода, так и без него. Это имеет большое значение для анаэробов.

  • Запасающая функция. Полисахариды являются запасными питательными веществами, играя роль «хранилищ» энергии. Резервным углеводом растений является крахмал, животных и грибов — гликоген, бактерий — муреин (пептидогликан). При необходимости эти полисахариды расщепляются до глюкозы, которая служит основным источником энергии для большинства живых организмов.
  • Структурная функция. Углеводы используются в качестве строительного материала. Оболочки клеток растений на 20-40 % состоят из целлюлозы, которая обладает высокой прочностью. Поэтому они надежно защищают внутриклеточное содержимое и поддерживают форму клеток. Хитин является важным структурным компонентом наружного скелета членистоногих, кольчатых червей, клеточных оболочек грибов и некоторых протист.

 

Биологические функции углеводов фотоБиологические функции углеводов
  • Олиго- и полисахариды входят в состав цитоплазматической мембраны клеток животных, образуя надмембранный комплекс — гликокаликс. Углеводные компоненты цитоплазматической мембраны выполняют рецепторную функцию: воспринимают сигналы из окружающей среды и передают их в клетку.
  • Метаболическая функция углеводов состоит в том, что в клетках живых организмов моносахариды являются основой для синтеза многих органических веществ — олиго- и полисахаридов, нуклеотидов, некоторых спиртов. Ряд веществ, образующихся в ходе расщепления молекул моносахаридов, используется клетками для синтеза аминокислот, жирных кислот и др.
  • Защитная. Они входят в состав слизей, предохраняющих кишечник, бронхи от механических повреждений, в состав репарина — вещества, предотвращающего свёртывание крови у человека.
  • Осмотическая. Углеводы участвуют в регуляции осмотического давления в организме.

Функции углеводов фото

 

Вам будет интересно

Тема: Углеводы. 1.Определение понятия: углеводы — Студопедия

План:

1.Определение понятия: углеводы. Классификация.

2. Состав, физические и химические свойства углеводов.

3.Рспространение в природе. Получение. Применение.

Содержание лекции:

Углеводы – органические соединения, содержащие карбонильные и гидроксильные группировки атомов, имеющие общую формулу Cn(H2O)m, (где n и m>3).

Углеводы – вещества, имеющие первостепенное биохимическое значение, широко распространены в живой природе и играют большую роль в жизни человека. Название углеводы возникло на основании данных анализа первых известных представителей этой группы соединения. Вещества этой группы состоят из углерода, водорода и кислорода, причем соотношение чисел атомов водорода и кислорода в них такое же, как и в воде, т.е. на каждые 2 атома водорода приходится один атом кислорода. В прошлом столетии их рассматривали как гидраты углерода. Отсюда и возникло русское название углеводы, предложенное в 1844г. К.Шмидтом. Общая формула углеводов, согласно сказанному, СмН2пОп. При вынесении «n» за скобки получается формула См2О)n, которая очень наглядно отражает название «угле — воды». Изучение углеводов показало, что существуют соединения, которые по всем свойствам нужно отнести в группу углеводов, хотя они имеют состав, не точно соответствующий формуле СмH2пОп. Тем не менее старинное название «углеводы», сохранилось до наших дней, хотя наряду с этим названием для обозначения рассматриваемой группы веществ иногда применяют и более новое название – глициды.


Углеводы можно разделить на три группы: 1) Моносахариды – углеводы, способные гидролизоваться с образованием более простых углеводов. К данной группе относятся гексозы (глюкоза и фруктоза), а также пентоза (рибоза). 2) Олигосахариды – продукты конденсации нескольких моносахаридов (например, сахароза). 3) Полисахариды – полимерные соединения, содержащие большое число молекул моносахаридов.

Моносахариды. Моносахариды являются гетерофункциональными соединениями. В их молекулах одновременно содержатся и карбонильная (альдегидная или кетонная), и несколько гидроксильных групп, т.е. моносахариды представляют собой полигидроксикарбонильные соединения — полигидроксиальдегиды и полигидроксикетоны. В зависимости от этого моносахариды подразделяются на альдозы (в моносахариде содержится альдегидная группа) и кетозы (содержится кетогруппа). Например, глюкоза – это альдоза, а фруктоза – это кетоза.


Получение. В свободном виде в природе встречается преимущественно глюкоза. Она же является структурной единицей многих полисахаридов. Другие моносахариды в свободном состоянии встречаются редко и в основном известны как компоненты олиго- и полисахаридов. В природе глюкоза получается в результате реакции фотосинтеза: 6CO2 + 6H2O ® C6H12O6(глюкоза) + 6O2Впервые глюкоза получена в 1811 году русским химиком Г.Э.Кирхгофом при гидролизе крахмала. Позже синтез моносахаридов из формальдегида в щелочной среде предложен А.М.Бутлеровым

O II 6C–H ––Ca(OH)2® C6H12O6 I H

В промышленности глюкозу получают гидролизом крахмала в присутствии серной кислоты.

(C6H10O5)n(крахмал) + nH2O ––H2SO4,t°® nC6H12O6(глюкоза)

Физические свойства.Моносахариды – твердые вещества, легко растворимые в воде, плохо – в спирте и совсем нерастворимые в эфире. Водные растворы имеют нейтральную реакцию на лакмус. Большинство моносахаридов обладают сладким вкусом, однако меньшим, чем свекловичный сахар.

Глюкоза C6H12O6 (альдегидоспирт).

Глюкозу называют также виноградным сахаром, так как она содержится в большом количестве в виноградном соке. Кроме винограда глюкоза находится и в других сладких плодах и даже в разных частях растений. Распространена глюкоза и в животном мире: 0,1% ее находится в крови. Глюкоза разносится по всему телу и служит источником энергии для организма. Она также входит в состав сахарозы, лактозы, целлюлозы, крахмала.

В организме человека глюкоза содержится а мышцах, крови, и в небольших количествах во всех клетках.

В природе глюкоза на ряду с другими углеводами образуется в результате реакции фотосинтеза:

6СО2+6Н2О хролофил С6Н12О6+6О2-Q.

Физические свойства. Глюкоза — бесцветное кристаллическое вещество со сладким вкусом, хорошо растворимое в воде. Из водного раствора она выделяется в виде кристаллогидрата С6Н12Об*Н2О. По сравнению со свекловичным сахаром она менее сладкая.

Глюкоза может существовать в линейной и циклической формах:

УГЛЕВОДЫ — это… Что такое УГЛЕВОДЫ?

УГЛЕВОДЫ

сахара, алифатич. полиоксикарбонильные соединения и их многочисл. (в т. ч. полимерные) производные, компоненты всех без исключения живых организмов. У. делят на моносахариды, олигосахариды и полисахариды. Большинство природных У.— производные циклич. форм моносахаридов. В растениях моносахариды являются первичными продуктами фотосинтеза и используются далее для биосинтеза гликозидов, полисахаридов, аминокислот, жирных к-т, полифенолов и др. В этих превращениях участвуют, как правило, фосфорилированные производные сахаров, важнейшие из к-рых — нуклеозид-дифосфатсахара. У. запасаются как энергетич. резерв в виде крахмала или гликогена; освобождение энергии происходит либо в результате гидролиза (фосфоролиза) резервных полисахаридов с последующим расщеплением освобождающихся моносахаридов, либо в анаэробных условиях (брожение, гликолиз), либо окислит, путём. В виде гликозидов в растениях и у животных осуществляется транспорт разл. метаболитов. Нек-рые углеводные полимеры служат опорным материалом жёстких клеточных стенок (целлюлоза, хитин, пептидогликаны) или выполняют функции цементирующего материала в межклеточном пространстве (пектины, мукополисахариды). Гидрофильные полисахариды способствуют поддержанию водного баланса клеток. Особенно важную роль играют углеводные цепи сложных У. (липополисахаридов, гликолипидов, гликопротеидов) в образовании специфич. клеточных поверхностей и мембран и, следовательно, в таких высокоспецифичных явлениях клеточного взаимодействия, как оплодотворение, «узнавание» клеток при тканевой дифференцировке и отторжении чужеродной ткани и т. д. У. применяют в пищевой (сахароза, крахмал, пектины), целлюлозно-бумажной, текстильной, химич. пром-сти (целлюлоза и её производные), медицине (глюкоза, аскорбиновая к-та, нек-рые антибиотики, сердечные гликозиды, гепарин).

.(Источник: «Биологический энциклопедический словарь.» Гл. ред. М. С. Гиляров; Редкол.: А. А. Бабаев, Г. Г. Винберг, Г. А. Заварзин и др. — 2-е изд., исправл. — М.: Сов. Энциклопедия, 1986.)

углево́ды (сахара), класс органических соединений, присутствующих во всех живых клетках. По химической природе углеводы – полиоксикарбонильные соединения: их углеродный скелет несёт какую-либо карбонильную группу (альдегидную, кетонную, карбоксильную) и несколько гидроксильных групп. Общую формулу многих углеводов можно представить в виде Cm (H2O)n, т.е. углерод + вода (отсюда название – углеводы). Кроме того, существует множество углеводов, включающих различные группы (напр., аминогруппу NH2). У простых углеводов – моносахаридов – углеродная цепь может содержать 3 углеродных атома (триозы), 4 (тетрозы), 5 (пентозы), 6 (гексозы) и т.д. Пентозы рибоза и дезоксирибоза входят в состав нуклеотидов и нуклеиновых кислот. Гексозы глюкоза, фруктоза и галактоза играют важную роль в обеспечении всех организмов энергией. В растениях моносахариды образуются в процессе фотосинтеза и служат также исходными веществами для биосинтеза более сложных углеводов, аминокислот и других соединений.
При объединении нескольких молекул моносахаридов образуются олигосахариды (дисахариды, трисахариды и т.д.), из которых широко распространены дисахариды сахароза и лактоза.
Из циклических форм моносахаридов построены длинные цепи полисахаридов. Наряду с белками и нуклеиновыми кислотами эти углеводы являются важнейшими биополимерами.
Разнообразные функции в организмах выполняют продукты конденсации циклических форм моно– и олигосахаридов с различными соединениями – гликозиды, а также комплексы углеводов с белками (гликопротеиды), липидами (гликолипиды) и другие сложные углеводы. Для животных и человека углеводы, подобно белкам и жирам, служат незаменимыми компонентами пищи, обеспечивая прежде всего потребность организма в энергии.

.(Источник: «Биология. Современная иллюстрированная энциклопедия.» Гл. ред. А. П. Горкин; М.: Росмэн, 2006.)

.

Углеводы — это… Что такое Углеводы?

Углево́ды (сахара, сахариды) — органические вещества, содержащие карбонильную группу и несколько гидроксильных групп[1]. Название класса соединений происходит от слов «гидраты углерода», оно было впервые предложено К. Шмидтом в 1844 году. Появление такого названия связано с тем, что первые из известных науке углеводов описывались брутто-формулой Cx(H2O)y, формально являясь соединениями углерода и воды.

Углеводы — весьма обширный класс органических соединений, среди них встречаются вещества с сильно различающимися свойствами. Это позволяет углеводам выполнять разнообразные функции в живых организмах. Соединения этого класса составляют около 80 % сухой массы растений и 2—3 % массы животных[1].

Простые и сложные

Углеводы являются неотъемлемым компонентом клеток и тканей всех живых организмов представителей растительного и животного мира, составляя (по массе) основную часть органического вещества на Земле. Источником углеводов для всех живых организмов является процесс фотосинтеза, осуществляемый растениями. По способности к гидролизу на мономеры углеводы делятся на две группы: простые (моносахариды) и сложные (дисахариды и полисахариды). Сложные углеводы, в отличие от простых, способны гидролизоваться с образованием моносахаридов, мономеров. Простые углеводы легко растворяются в воде и синтезируются в зелёных растениях. Сложные углеводы являются продуктами поликонденсации простых сахаров (моносахаридов), а в процессе гидролитического расщепления образуют сотни и тысячи молекул моносахаридов[2].

Моносахариды

Распространённый в природе моносахарид — бета-D-глюкоза.

Моносахари́ды (от греческого monos — единственный, sacchar — сахар) — простейшие углеводы, не гидролизующиеся с образованием более простых углеводов — обычно представляют собой бесцветные, легко растворимые в воде, плохо — в спирте и совсем нерастворимые в эфире, твёрдые прозрачные органические соединения[2], одна из основных групп углеводов, самая простая форма сахара. Водные растворы имеют нейтральную pH. Некоторые моносахариды обладают сладким вкусом. Моносахариды содержат карбонильную (альдегидную или кетонную) группу, поэтому их можно рассматривать как производные многоатомных спиртов. Моносахарид, у которого карбонильная группа расположена в конце цепи, представляет собой альдегид и называется альдоза. При любом другом положении карбонильной группы моносахарид является кетоном и называется кетоза. В зависимости от длины углеродной цепи (от трёх до десяти атомов) различают триозы, тетрозы, пентозы, гексозы, гептозы и так далее. Среди них наибольшее распространение в природе получили пентозы и гексозы[2]. Моносахариды — стандартные блоки, из которых синтезируются дисахариды, олигосахариды и полисахариды.

В природе в свободном виде наиболее распространена D-глюкоза (виноградный сахар или декстроза, C6H12O6) — шестиатомный сахар (гексоза), структурная единица (мономер) многих полисахаридов (полимеров) — дисахаридов: (мальтозы, сахарозы и лактозы) и полисахаридов (целлюлоза, крахмал). Другие моносахариды, в основном, известны как компоненты ди-, олиго- или полисахаридов и в свободном состоянии встречаются редко. Природные полисахариды служат основными источниками моносахаридов[2].

Дисахариды

Дисахари́ды (от di — два, sacchar — сахар) — сложные органические соединения, одна из основных групп углеводов, при гидролизе каждая молекула распадается на две молекулы моносахаридов, являются частным случаем олигосахаридов. По строению дисахариды представляют собой гликозиды, в которых две молекулы моносахаридов соединённы друг с другом гликозидной связью, образованной в результате взаимодействия гидроксильных групп (двух полуацетальных или одной полуацетальной и одной спиртовой). В зависимости от строения дисахариды делятся на две группы: восстанавливающие и невосстанавливающие. Например, в молекуле мальтозы у второго остатка моносахарида (глюкозы) имеется свободный полуацетальный гидроксил, придающий данному дисахариду восстанавливающие свойства. Дисахариды наряду с полисахаридами являются одним из основных источников углеводов в рационе человека и животных[3].

Олигосахариды

О́лигосахари́ды (от греч. ὀλίγος — немногий) — углеводы, молекулы которых синтезированы из 2 — 10 остатков моносахаридов, соединённых гликозидными связями. Соответственно различают: дисахариды, трисахариды и так далее[3]. Олигосахариды, состоящие из одинаковых моносахаридных остатков, называют гомополисахаридами, а из разных — гетерополисахаридами. Наиболее распространены среди олигосахаридов дисахариды.

Среди природных трисахаридов наиболее распространена рафиноза — невосстанавливающий олигосахарид, содержащий остатки фруктозы, глюкозы и галактозы — в больших количествах содержится в сахарной свёкле и во многих других растениях[3].

Полисахариды

Полисахари́ды — общее название класса сложных высокомолекулярных углеводов, молекулы которых состоят из десятков, сотен или тысяч мономеров — моносахаридов. С точки зрения общих принципов строения в группе полисахаридов возможно различить гомополисахариды, синтезированные из однотипных моносахаридных единиц и гетерополисахариды, для которых характерно наличие двух или нескольких типов мономерных остатков[4].

Гомополисахариды (гликаны), состоящие из остатков одного моносахарида, могут быть гексозами или пентозами, то есть в качестве мономера может быть использована гексоза или пентоза. В зависимости от химической природы полисахарида различают глюканы (из остатков глюкозы), маннаны (из маннозы), галактаны (из галактозы) и другие подобные соединения. К группе гомополисахаридов относятся органические соединения растительного (крахмал, целлюлоза, пектиновые вещества), животного (гликоген, хитин) и бактериального (декстраны) происхождения[2].

Полисахариды необходимы для жизнедеятельности животных и растительных организмов. Это один из основных источников энергии организма, образующейся в результате обмена веществ. Полисахариды принимают участие в иммунных процессах, обеспечивают сцепление клеток в тканях, являются основной массой органического вещества в биосфере.

Крахма́л (C6H10O5)n — смесь двух гомополисахаридов: линейного — амилозы и разветвлённого — амилопектина, мономером которых является альфа-глюкоза. Белое аморфное вещество, не растворимое в холодной воде, способное к набуханию и частично растворимое в горячей воде[2]. Молекулярная масса 105—107 Дальтон. Крахмал, синтезируемый разными растениями в хлоропластах, под действием света при фотосинтезе, несколько различается по структуре зёрен, степени полимеризации молекул, строению полимерных цепей и физико-химическим свойствам. Как правило, содержание амилозы в крахмале составляет 10—30 %, амилопектина — 70—90 %. Молекула амилозы содержит в среднем около 1 000 остатков глюкозы, связанных между собой альфа-1,4-связями. Отдельные линейные участки молекулы амилопектина состоят из 20—30 таких единиц, а в точках ветвления амилопектина остатки глюкозы связаны межцепочечными альфа-1,6-связями. При частичном кислотном гидролизе крахмала образуются полисахариды меньшей степени полимеризации — декстрины (C6H10O5)p, а при полном гидролизе — глюкоза[4].

Гликоге́н (C6H10O5)n — полисахарид, построенный из остатков альфа-D-глюкозы — главный резервный полисахарид высших животных и человека, содержится в виде гранул в цитоплазме клеток практически во всех органах и тканях, однако, наибольшее его количество накапливается в мышцах и печени. Молекула гликогена построена из ветвящихся полиглюкозидных цепей, в линейной последовательности которых, остатки глюкозы соединены посредством альфа-1,4-связями, а в точках ветвления межцепочечными альфа-1,6-связями. Эмпирическая формула гликогена идентична формуле крахмала. По химическому строению гликоген близок к амилопектину с более выраженной разветвлённостью цепей, поэтому иногда называется неточным термином «животный крахмал». Молекулярная масса 105—108 Дальтон и выше[4]. В организмах животных является структурным и функциональным аналогом полисахарида растений — крахмала. Гликоген образует энергетический резерв, который при необходимости восполнить внезапный недостаток глюкозы может быть быстро мобилизован — сильное разветвление его молекулы ведёт к наличию большого числа концевых остатков, обеспечивающих возможность быстрого отщепления нужного количества молекул глюкозы[2]. В отличие от запаса триглицеридов (жиров) запас гликогена не настолько ёмок (в калориях на грамм). Только гликоген, запасённый в клетках печени (гепатоцитах) может быть переработан в глюкозу для питания всего организма, при этом гепатоциты способны накапливать до 8 процентов своего веса в виде гликогена, что является максимальной концентрацией среди всех видов клеток. Общая масса гликогена в печени взрослых может достигать 100—120 граммов. В мышцах гликоген расщепляется на глюкозу исключительно для локального потребления и накапливается в гораздо меньших концентрациях (не более 1 % от общей массы мышц), тем не менее общий запас в мышцах может превышать запас, накопленный в гепатоцитах.

Целлюло́за (клетча́тка) — наиболее распространённый структурный полисахарид растительного мира, состоящий из остатков альфа-глюкозы, представленных в бета-пиранозной форме. Таким образом, в молекуле целлюлозы бета-глюкопиранозные мономерные единицы линейно соединены между собой бета-1,4-связями. При частичном гидролизе целлюлозы образуется дисахарид целлобиоза, а при полном — D-глюкоза. В желудочно-кишечном тракте человека целлюлоза не переваривается, так как набор пищеварительных ферментов не содержит бета-глюкозидазу. Тем не менее, наличие оптимального количества растительной клетчатки в пище способствует нормальному формированию каловых масс[4]. Обладая большой механической прочностью, целлюлоза выполняет роль опорного материала растений, например, в составе древесины её доля варьирует от 50 до 70 %, а хлопок представляет собой практически стопроцентную целлюлозу[2].

Хити́н — структурный полисахарид низших растений, грибов и беспозвоночных животных (в основном роговые оболочки членистоногих — насекомых и ракообразных). Хитин, подобно целлюлозе в растениях, выполняет опорные и механические функции в организмах грибов и животных. Молекула хитина построена из остатков N-ацетил-D-глюкозамина, связанных между собой бета-1,4-гликозиюными связями. Макромолекулы хитина неразветвлённые и их пространственная укладка не имеет ничего общего с целлюлозой[2].

Пекти́новые вещества́ — полигалактуроновая кислота, содержится в плодах и овощах, остатки D-галактуроновой кислоты связаны альфа-1,4-гликозидными связями. В присутствии органических кислот спосбны к желеобразованию, применяются в пищевой промышленности для приготовления желе и мармелада. Некоторые пектиновые вещества оказывают противоязвенный эффект и являются активной составляющей ряда фармацевтических препаратов, например, производное подорожника «плантаглюцид»[2].

Мурами́н (лат. múrus — стенка) — полисахарид, опорно-механический материал клеточной стенки бактерий. По химическому строению представляет собой неразветвлённую цепь, построенную из чередующихся остатков N-ацетилглюкозамина и N-ацетилмурамовой кислоты, соединённых бета-1,4-гликозидной связью. Мурамин по структурной организации (неразветвлённая цепь бета-1,4-полиглюкопиранозного скелета) и функциональной роли весьма близок к хитину и целлюлозе[2].

Декстра́ны — полисахариды бактериального происхождения — синтезируются в условиях промышленного производства микробиологическим путём (воздействием микроорганизмов Leuconostoc mesenteroides на раствор сахарозы) и используются в качестве заменителей плазмы крови (так называемые клинические «декстраны»: Полиглюкин и другие)[2].

Пространственная изомерия

Слева D-глицеральдегид, справа L-глицеральдегид.

Изомерия (от др.-греч. ἴσος — равный, и μέρος — доля, часть) — существование химических соединений (изомеров), одинаковых по составу и молекулярной массе, различающихся по строению или расположению атомов в пространстве и, вследствие этого, по свойствам.

Стереоизомерия моносахаридов: изомер глицеральдегида у которого при проецировании модели на плоскость ОН-группа у асимметричного атома углерода расположена с правой стороны принято считать D-глицеральдегидом, а зеркальное отражение — L-глицеральдегидом. Все изомеры моносахаридов делятся на D- и L- формы по сходству расположения ОН-группы у последнего асимметричного атома углерода возле СН2ОН-группы (кетозы содержат на один асимметричный атом углерода меньше, чем альдозы с тем же числом атомов углерода). Природные гексозы — глюкоза, фруктоза, манноза и галактоза — по стереохимической конфигурациям относят к соединениям D-ряда[5].

Биологическая роль

В живых организмах углеводы выполняют следующие функции:

  1. Структурная и опорная функции. Углеводы участвуют в построении различных опорных структур. Так целлюлоза является основным структурным компонентом клеточных стенок растений, хитин выполняет аналогичную функцию у грибов, а также обеспечивает жёсткость экзоскелета членистоногих[1].
  2. Защитная роль у растений. У некоторых растений есть защитные образования (шипы, колючки и др.), состоящие из клеточных стенок мёртвых клеток.
  3. Пластическая функция. Углеводы входят в состав сложных молекул (например, пентозы (рибоза и дезоксирибоза) участвуют в построении АТФ, ДНК и РНК)[6].
  4. Энергетическая функция. Углеводы служат источником энергии: при окислении 1 грамма углеводов выделяются 4,1 ккал энергии и 0,4 г воды[6].
  5. Запасающая функция. Углеводы выступают в качестве запасных питательных веществ: гликоген у животных, крахмал и инулин — у растений[1].
  6. Осмотическая функция. Углеводы участвуют в регуляции осмотического давления в организме. Так, в крови содержится 100—110 мг/% глюкозы, от концентрации глюкозы зависит осмотическое давление крови.
  7. Рецепторная функция. Олигосахариды входят в состав воспринимающей части многих клеточных рецепторов или молекул-лигандов.

Биосинтез

В суточном рационе человека и животных преобладают углеводы. Травоядные получают крахмал, клетчатку, сахарозу. Хищники получают гликоген с мясом.

Организмы животных не способны синтезировать углеводы из неорганических веществ. Они получают их от растений с пищей и используют в качестве главного источника энергии, получаемой в процессе окисления:

Cx(H2O)y + xO2 → xCO2 + yH2O + энергия.

В зеленых листьях растений углеводы образуются в процессе фотосинтеза — уникального биологического процесса превращения в сахара неорганических веществ — оксида углерода (IV) и воды, происходящего при участии хлорофилла за счёт солнечной энергии:

xCO2 + yH2O → Cx(H2O)y + xO2

Обмен

Основная статья: Углеводный обмен

Обмен углеводов в организме человека и высших животных складывается из нескольких процессов[4]:

  1. Гидролиз (расщепление) в желудочно-кишечном тракте полисахаридов и дисахаридов пищи до моносахаридов, с последующим всасыванием из просвета кишки в кровеносное русло.
  2. Гликогеногенез (синтез) и гликогенолиз (распад) гликогена в тканях, в основном в печени.
  3. Аэробный (пентозофосфатный путь окисления глюкозы или пентозный цикл) и анаэробный (без потребления кислорода) гликолиз — пути расщепления глюкозы в организме.
  4. Взаимопревращение гексоз.
  5. Аэробное окисление продукта гликолиза — пирувата (завершающая стадия углеводного обмена).
  6. Глюконеогенез — синтез углеводов из неуглеводистого сырья (пировиноградная, молочная кислота, глицерин, аминокислоты и другие органические соединения).

Важнейшие источники

Главными источниками углеводов из пищи являются: хлеб, картофель, макароны, крупы, сладости. Чистым углеводом является сахар. Мёд, в зависимости от своего происхождения, содержит 70—80 % глюкозы и фруктозы.

Для обозначения количества углеводов в пище используется специальная хлебная единица.

К углеводной группе, кроме того, примыкают и плохо перевариваемые человеческим организмом клетчатка и пектины.

Список наиболее распространенных углеводов

Примечания

  1. 1 2 3 4 Н. А. АБАКУМОВА, Н. Н. БЫКОВА. 9. Углеводы // Органическая химия и основы биохимии. Часть 1. — Тамбов: ГОУ ВПО ТГТУ, 2010. — ISBN 978-5-8265-0922-7
  2. 1 2 3 4 5 6 7 8 9 10 11 12 Н. А. Тюкавкина, Ю. И. Бауков. Биоорганическая химия. — 1-е изд. — М.: Медицина, 1985. — С. 349—400. — 480 с. — (Учебная литература для студентов медицинских институтов). — 75 000 экз.
  3. 1 2 3 Т. Т. Березов, Б. Ф. Коровкин. Биологическая химия / Под ред. акад. АМН СССР С. С. Дебова.. — 2-е изд., перераб. и доп. — М.: Медицина, 1990. — С. 234—235. — 528 с. — (Учебная литература для студентов медицинских институтов). — 100 000 экз. — ISBN 5-225-01515-8
  4. 1 2 3 4 5 Т. Т. Березов, Б. Ф. Коровкин. Биологическая химия / Под ред. акад. АМН СССР С. С. Дебова.. — 2-е изд., перераб. и доп. — М.: Медицина, 1990. — С. 235—238. — 528 с. — (Учебная литература для студентов медицинских институтов). — 100 000 экз. — ISBN 5-225-01515-8
  5. Т. Т. Березов, Б. Ф. Коровкин. Биологическая химия: Учебник / Под ред. акад. АМН СССР С. С. Дебова.. — 2-е изд., перераб. и доп. — М.: Медицина, 1990. — С. 226—276. — 528 с. — 100 000 экз. — ISBN 5-225-01515-8
  6. 1 2 А. Я. Николаев. 9. Обмен и функции углеводов // Биологическая химия. — М.: Медицинское информационное агентство, 2004. — ISBN 5-89481-219-4

Ссылки

  • Углеводы  (рус.). — строение и химические свойства.(недоступная ссылка — история) Проверено 1 июня 2009.
 Просмотр этого шаблона Углеводы
Общие: Альдозы · Кетозы · Фуранозы · Пиранозы
Геометрия Аномеры · Мутаротация · Проекция Хоуорса
Моносахариды
Диозы Альдодиоза (Гликольальдегид)
Триозы Кетотриоза (Дигидроксиацетон) · Альдотриоза (Глицеральдегид)
Тетрозы Кетотетроза (Эритрулоза) · Альтотетрозы (Эритроза, Треоза)
Пентозы Кетопентозы (Рибулоза, Ксилулоза)

Альдопентозы (Рибоза, Арабиноза, Ксилоза, Ликсоза)

Дезоксисахариды (Дезоксирибоза)
Гексоза Кетогексозы (Псикоза, Фруктоза, Сорбоза, Тагатоза)

Альдогексозы (Аллоза, Альтроза, Глюкоза, Манноза, Гулоза, Идоза, Галактоза, Талоза)

Дезоксисахариды (Фукоза, Фукулоза, Рамноза)
Гептозы Кетогептозы (Седогептулоза, Манногептулоза)
>7 Октозы · Нанозы (Нейраминовая кислота)
Мультисахариды
Производные углеводов
Плазмозамещающие и перфузионные растворы — АТХ код: B05

 

B05A
Препараты крови
B05B
Растворы для в/в введения
B05C
Ирригационные растворы
B05D
Растворы для перитонеального диализа
B05X
Добавки к растворам для в/в введения
B05Z

Определение углеводов и примеры — Биологический онлайн-словарь

Определение

существительное
множественное число: углеводы
car · bo · hy · drate, kɑːbəʊˈhaɪdɹeɪt
Любая группа органических соединений, состоящая из углерода, водорода и кислорода, обычно в соотношении 1: 2: 1, отсюда общая формула: C n (H 2 O) n

Подробная информация

Обзор

Биомолекула относится к любой молекуле, производимой живыми организмами .Таким образом, большинство из них являются органическими молекулами. Четыре основные группы биомолекул включают аминокислоты и белки, углеводы (особенно полисахариды), липиды и нуклеиновые кислоты. Углевод относится к любой группе органических соединений, состоящих из углерода, водорода и кислорода, обычно в соотношении 1: 2: 1, отсюда общая формула: C n (H 2 O) n . Углеводы являются наиболее распространенными среди основных классов биомолекул.

Характеристики углеводов

Углеводы — это органические соединения. Органическое соединение — это соединение, которое, как правило, содержит углерод, ковалентно связанный с другими атомами, особенно углерод-углерод (C-C) и углерод-водород (C-H). Углеводы являются примером многих типов органических соединений. Его четыре основных составляющих элемента — это углерод, водород, кислород и азот. Большинство из них следуют общей формуле: C n (H 2 O) n , откуда они и получили свое название, углеводов (что означает гидратов углерода ).Это потому, что отношение атомов водорода к атомам кислорода часто составляет 2: 1. Однако не все углеводы соответствуют этой формуле. По сути, они представляют собой органические соединения, которые представляют собой альдегиды или кетоны с добавлением многих гидроксильных групп, обычно на каждый атом углерода, не являющийся частью функциональной группы альдегида или кетона.
Углеводы — это биомолекулы, богатые энергией . Они являются одними из основных питательных веществ, необходимых многим живым организмам, потому что они обеспечивают организм источником химической энергии.АТФ — это химическая энергия, вырабатываемая в ходе метаболических процессов клеточного дыхания. Вкратце, глюкоза (моносахарид) «сбивается» для извлечения энергии, в первую очередь, в форме АТФ. Во-первых, ряд реакций приводит к превращению глюкозы в пируват. Затем он использует пируват, превращая его в ацетилкофермент А для окисления посредством циклической реакции, управляемой ферментами, которая называется цикл Кребса . Наконец, каскад реакций ( окислительно-восстановительных реакций, ) с участием цепи переноса электронов приводит к производству АТФ (через хемиосмос). 1 Молекулы глюкозы, используемые в гликолизе, происходят из углеводсодержащей диеты. Сложные углеводы расщепляются на более простые моносахариды, такие как глюкоза, путем осахаривания во время пищеварения.
Углеводы — один из основных источников питания животных, включая человека. Однако многие другие углеводы находятся в форме волокон. И как клетчатка, она с трудом переваривается людьми. Обычно волокнистые углеводы включают слизь, пектины, камеди и нерастворимые компоненты, такие как те, которые содержатся в лигнине и целлюлозе.Жвачные животные, такие как крупного рогатого скота , овец , оленей и коз , способны переваривать растительные материалы, которые в противном случае не перевариваются человеком. Некоторые симбиотические бактерии (например, Ruminococcus , Fibrobacter , Streptococcus , Escherichia ) обитают в их рубце, которые могут разлагать целлюлозные материалы на более простые углеводы для жвачных животных.

Классификация углеводов

Многие углеводы представляют собой полимеров .Полимер — это соединение, состоящее из нескольких повторяющихся звеньев ( мономеров ) или протомеров и полученное путем полимеризации . Сахарид — структурная (мономерная) единица углеводов. Углеводы можно разделить на моносахаридов , дисахаридов , олигосахаридов и полисахаридов в зависимости от количества сахаридных единиц.
Самый фундаментальный тип — это простые сахара, называемые моносахаридами .Эти простые сахара могут сочетаться друг с другом, образуя более сложные типы. Примерами являются глюкоза , галактоза и фруктоза . Комбинация двух простых сахаров называется дисахаридом . Примерами являются сахароза , мальтоза и лактоза . Углеводы, состоящие из трех-десяти простых сахаров, называются олигосахаридами . Примерами являются рафиноза , мальтотриоза и мальтотетраоза .Углеводы, состоящие из нескольких сахаридных единиц, называются полисахаридами . Когда полисахарид состоит из сахаридных единиц одного и того же типа, его называют гомополисахаридом (или гомогликаном), тогда как полисахарид состоит из более чем одного типа сахаридов, он называется гетерополисахаридом (или гетерогликаном). Примерами полисахаридов являются крахмал , целлюлоза и гликоген .
С точки зрения питания углеводы делятся на две основные группы пищевых продуктов: простые и сложные . Простые углеводы — иногда называемые просто «сахаром» — это углеводы, которые легко усваиваются и служат быстрым источником энергии. Сложные углеводы — это те углеводы, которым требуется больше времени для переваривания и метаболизма. Они часто богаты клетчаткой и, в отличие от простых углеводов, с меньшей вероятностью вызывают скачки сахара в крови.

Функции углеводов

Как отмечалось ранее, одна из основных функций углеводов — обеспечивать организм энергией.В частности, моносахариды являются основным источником энергии для обмена веществ. Когда они еще не нужны, они превращаются в полисахариды, накапливающие энергию, такие как крахмал у растений и гликоген у животных. В растениях крахмал содержится в амилопластах в клетках различных органов растений, например. плоды, семена, корневища и клубни. У животных гликоген хранится в печени и мышечных клетках.
Кроме того, углеводы также являются важными структурными компонентами. На клеточном уровне полисахариды (например,грамм. целлюлоза ) входят в состав клеточных стенок клеток растений и многих водорослей . Клетки без клеточных стенок более подвержены структурным и механическим повреждениям. У растений клеточная стенка предотвращает разрыв клетки в гипотоническом растворе. Осмотическое давление заставляет воду диффундировать в клетку. Клеточная стенка сопротивляется осмотическому давлению и тем самым предотвращает разрыв клетки. В клеточной стенке бактерий структурным углеводом является мышиный, тогда как в грибах полисахарид хитин является компонентом клеточной стенки.У некоторых бактерий есть полисахаридная «капсула», которая помогает им уклоняться от обнаружения иммунными клетками. У некоторых животных есть экзоскелеты из хитина, которые обеспечивают силу и защиту мягкотелым животным.
Нуклеиновые кислоты, такие как РНК и ДНК, содержат сахарный компонент, то есть рибозу и дезоксирибозу соответственно. Многие другие биологические молекулы также содержат сахарные компоненты, например гликопротеины, гликолипиды, протеогликаны, которые, в свою очередь, выполняют жизненно важные роли, например иммунный ответ, детоксикация, свертывание крови, оплодотворение, биологическое распознавание, и т. д. .

Общие биологические реакции с участием углеводов

Общие биологические реакции с участием углеводов

У растений и других фотосинтетических автотрофов синтез простых сахаров (например, глюкозы) осуществляется посредством фотосинтеза . В процессе используются углекислый газ, вода, неорганические соли и световая энергия (от солнечного света), захваченная светопоглощающими пигментами, такими как хлорофилл и другие вспомогательные пигменты, для производства молекул глюкозы, воды и кислорода.

Общие биологические реакции с участием углеводов

Моносахарид образует углеводы путем соединения в гликозидные связи посредством процесса, называемого синтез дегидратации . Например, при образовании дисахарида соединение двух моносахаридов приводит к выделению воды в качестве побочного продукта. Точно так же полисахариды образуются из длинной цепи моносахаридных единиц в процессе дальнейшей дегидратации. Образующиеся крахмал и гликоген служат молекулами, богатыми энергией.Эти сложные углеводы расщепляются на более простые формы (например, глюкозу), когда организму требуется больше энергии. Этот процесс называется осахариванием.

Общие биологические реакции с участием углеводов

Процесс, при котором сложные углеводы разлагаются до более простых форм, таких как глюкоза, называется осахариванием. Это влечет за собой гидролиз . У людей и других высших животных это связано с ферментативным действием. Во рту глюкозосодержащие сложные углеводы расщепляются на более простые формы под действием амилазы слюны.В тонком кишечнике продолжается переваривание сложных углеводов. Ферменты, такие как мальтаза , лактаза и сахараза , расщепляют дисахариды на моносахаридные составляющие. Глюкозидазы представляют собой другую группу ферментов, которые катализируют удаление концевой глюкозы из полисахарида, состоящего в основном из длинных цепей глюкозы.

Общие биологические реакции с участием углеводов

Моносахариды из переваренных углеводов абсорбируются эпителиальными клетками тонкого кишечника.Клетки забирают их из просвета кишечника через систему симпорта ионов натрия и глюкозы (через транспортеры глюкозы или GluT). GluT — это белки, облегчающие транспортировку моносахаридов, таких как глюкоза, в клетку. Затем они высвобождаются в капилляры посредством облегченной диффузии . Клетки тканей снова забирают их из кровотока через GluT. Находясь внутри клетки, глюкоза фосфорилируется, чтобы удерживать ее внутри клетки. Как следствие, глюкозо-6-фосфат может использоваться в любом из следующих метаболических путей: (1) гликолиз для синтеза химической энергии, (2) гликогенез, когда глюкоза доставляется в печень через портовые вены, чтобы быть хранится в виде клеточного гликогена или (3) пентозофосфатного пути с образованием НАДФН для синтеза липидов и пентоз для синтеза нуклеиновых кислот.

Общие биологические реакции с участием углеводов

Глюкоза метаболизируется клеткой в ​​процессе, называемом клеточное дыхание . Основными этапами или процессами клеточного дыхания являются (1) гликолиз, (2) цикл Кребса и (3) окислительное фосфорилирование. На начальной стадии (например, гликолиз ) серия реакций в цитозоле приводит к превращению моносахарида, часто глюкозы, в пируват и сопутствующему образованию относительно небольшого количества высокоэнергетической биомолекулы, такой как АТФ. .Также производится НАДН, молекула , переносящая электроны, . В присутствии достаточного количества кислорода пируват в результате гликолиза превращается в органическое соединение, которое полностью окисляется внутри митохондрии. Электронные носители (например, NADH и FADH 2 ) перемещают электроны по транспортной цепи . По всей цепи происходит серия окислительно-восстановительных реакций, которая завершается образованием конечного акцептора электронов , то есть молекулярного кислорода. Больше АТФ производится через механизм сцепления посредством хемиосмоса во внутренней митохондриальной мембране.
От одного только гликолиза чистый АТФ равен двум (от фосфорилирования на уровне субстрата). При окислительном фосфорилировании чистый АТФ составляет около 34. Таким образом, общий чистый АТФ на глюкозу составляет примерно 36. 2 При отсутствии или недостаточности кислорода происходит анаэробный катаболизм (например, при ферментации). Ферментация — это анаэробный процесс, при котором в результате гликолиза образуется АТФ. Однако вместо того, чтобы перемещать электроны в цепи переноса электронов, НАДН передает электроны пирувату, восстанавливая НАД + , которые поддерживают гликолиз. 2 Общее количество АТФ, произведенных на глюкозу в результате ферментации, составляет всего около двух.

Общие биологические реакции с участием углеводов

Глюконеогенез кажется обратным гликолизу: глюкоза превращается в пируват, тогда как в глюконеогенезе пируват превращается в глюкозу. По сути, глюконеогенез — это метаболический процесс, при котором глюкоза образуется из неуглеводных предшественников, например пируват , лактат , глицерин и глюкогенные аминокислоты .У человека и многих других позвоночных глюконеогенез происходит в основном в клетках печени. Это часто происходит во время голодания, низкоуглеводных диет или интенсивных упражнений. Цитологически процесс начинается в митохондриях, а затем заканчивается в просвете эндоплазматической сети. Глюкоза, образованная в результате гидролиза глюкозо-6-фосфата ферментом глюкозо-6-фосфатазой, перемещается из эндоплазматического ретикулума в цитоплазму.

Общие биологические реакции с участием углеводов

Гликогенез — это метаболический процесс производства гликогена из глюкозы для хранения, в основном, в клетках печени и мышц в ответ на высокий уровень глюкозы в кровотоке.Короткие полимеры глюкозы, особенно экзогенная глюкоза , превращаются в длинные полимеры, которые хранятся внутри клеток, главным образом в печени и мышцах. Когда организму требуется метаболическая энергия, гликоген расщепляется на субъединицы глюкозы в процессе гликогенолиза. Таким образом, гликогенез — это процесс , противоположный процессу гликогенолиза .

Общие биологические реакции с участием углеводов

Гликогенолиз — это процесс расщепления накопленного гликогена в печени, чтобы глюкоза могла быть произведена для использования в энергетическом обмене.Накопленный гликоген в клетках печени расщепляется на предшественники глюкозы. Отдельная молекула глюкозы отщепляется от гликогена и превращается в глюкозо-1-фосфат , который, в свою очередь, превращается в глюкозо-6-фосфат , который может участвовать в гликолизе .

Общие биологические реакции с участием углеводов

Пентозофосфатный путь — это путь метаболизма глюкозы, в котором пятиуглеродные сахара (пентозы) и НАДФН синтезируются в цитозоле.Путь пентозофосфата служит альтернативным путем метаболизма при расщеплении глюкозы. У животных это происходит в печени, коре надпочечников, жировой ткани, семенниках и т. Д. Этот путь является основным путем метаболизма нейтрофилов. Таким образом, врожденная недостаточность этого пути вызывает чувствительность к инфекции. У растений часть этого пути участвует в образовании гексоз из углекислого газа в процессе фотосинтеза.

Общие биологические реакции с участием углеводов

В этом метаболическом пути галактоза вступает в гликолиз, сначала фосфорилируясь с помощью фермента галактокиназы , а затем превращаясь в глюкозо-6-фосфат .Галактоза производится из лактозы (молочный сахар, состоящий из молекулы глюкозы и молекулы галактозы).

Общие биологические реакции с участием углеводов

В этом метаболическом пути фруктоза, вместо глюкозы, вступает в гликолиз. Тем не менее, перед гликолизом фруктозе требуются дополнительные действия. У животных это происходит в мышцах, жировой ткани и почках.

Общие биологические реакции с участием углеводов

Правильный метаболизм углеводов необходим для правильного усвоения и катаболизма углеводов в организме.Поддержание постоянного уровня глюкозы в организме называется глюкорегуляция . Гормоны поджелудочной железы, такие как инсулин и глюкагон, регулируют правильный метаболизм глюкозы. Уровень сахара в крови означает количество глюкозы, циркулирующей в организме. Когда уровень глюкозы в крови ниже , высвобождается глюкагон. И наоборот, высокий уровень глюкозы в крови стимулирует высвобождение инсулина. Инсулин регулирует метаболизм углеводов (а также жиров), способствуя захвату глюкозы из кровотока в скелетные мышцы и жировые ткани, которые хранятся в виде гликогена для последующего использования при гликогенолизе.Глюкагон, в свою очередь, стимулирует производство сахара. В частности, он заставляет хранящийся в печени гликоген превращаться в глюкозу, которая попадает в кровоток.
Неправильный углеводный обмен может привести к определенным метаболическим заболеваниям или нарушениям, например: сахарный диабет, непереносимость лактозы, галактоземия, болезнь накопления гликогена и мальабсорбция фруктозы.

Дополнительный

Химическая формула

Синоним (ы)

  • сахарид
  • carb
  • Производные термины

    Дополнительная литература

    См. Также

    Ссылка

    1. Gonzaga, M.V. Митохондриальная ДНК — признак психологического стресса — онлайн-блог и словарь по биологии. (2018, 29 сентября). Взято с: //www.biologyonline.com/mitochondrial-dna-hallmark-of-psychological-stress/ Ссылка
    2. Кэмпбелл, Н. А. (1996). Биология. Калифорния: The Benjamin / Cumming Publishing Company, Inc., стр. 159-ff.

    Примечания

    Более подробную информацию об углеводах и их роли в нашем рационе можно найти в учебнике по биологии развития, посвященном изучению сбалансированного питания. https://www.biologyonline.com/7/8-balanced-diet.htm


    © Biology Online. Контент предоставлен и модерируется Biology Online Editors


    .

    углеводов | Определение, классификация и примеры

    Классификация и номенклатура

    роль моносахаридов в передаче энергии Моносахариды играют важную роль в передаче энергии. Encyclopædia Britannica, Inc. Посмотреть все видео к этой статье

    Несмотря на то, что для углеводов был разработан ряд схем классификации, разделение на четыре основные группы — моносахариды, дисахариды, олигосахариды и полисахариды — является одним из наиболее распространенных.Большинство моносахаридов или простых сахаров содержится в винограде, других фруктах и ​​меде. Хотя они могут содержать от трех до девяти атомов углерода, наиболее распространенные представители состоят из пяти или шести, соединенных вместе в цепочечную молекулу. Три самых важных простых сахара — глюкоза (также известная как декстроза, виноградный сахар и кукурузный сахар), фруктоза (фруктовый сахар) и галактоза — имеют одинаковую молекулярную формулу (C 6 H 1 2 O 6 ), но, поскольку их атомы имеют разное структурное расположение, сахара имеют разные характеристики; я.е., они являются изомерами.

    Незначительные изменения структурной организации, обнаруживаемые живыми существами, влияют на биологическое значение изомерных соединений. Известно, например, что степень сладости различных сахаров различается в зависимости от расположения гидроксильных групп (OH), составляющих часть молекулярной структуры. Однако прямая корреляция, которая может существовать между вкусом и каким-либо конкретным структурным устройством, еще не установлена; то есть еще невозможно предсказать вкус сахара, зная его конкретное структурное расположение.Энергия в химических связях глюкозы косвенно снабжает большинство живых организмов большей частью энергии, необходимой им для продолжения своей деятельности. Галактоза, которая редко встречается в виде простого сахара, обычно комбинируется с другими простыми сахарами с образованием более крупных молекул.

    Получите эксклюзивный доступ к контенту нашего 1768 First Edition с подпиской. Подпишитесь сегодня

    Две молекулы простого сахара, связанные друг с другом, образуют дисахарид или двойной сахар.Дисахарид сахароза или столовый сахар состоит из одной молекулы глюкозы и одной молекулы фруктозы; Наиболее известные источники сахарозы — сахарная свекла и тростниковый сахар. Молочный сахар или лактоза и мальтоза также являются дисахаридами. Прежде чем энергия дисахаридов может быть использована живыми существами, молекулы должны быть разбиты на соответствующие моносахариды. Олигосахариды, которые состоят из трех-шести моносахаридных единиц, довольно редко встречаются в природных источниках, хотя было идентифицировано несколько производных растений.

    кристаллы лактозы Кристаллы лактозы показаны взвешенными в масле. Их отличная форма позволяет идентифицировать их в продуктах питания, исследуемых для исследования. © Кайла Саслоу, любезно предоставлено Университетом Висконсин-Мэдисон

    Полисахариды (термин означает множество сахаров) представляют собой большинство структурных и энергетических углеводов, встречающихся в природе. Большие молекулы, которые могут состоять из 10 000 связанных вместе моносахаридных единиц, полисахариды значительно различаются по размеру, сложности структуры и содержанию сахара; К настоящему времени идентифицировано несколько сотен различных типов.Целлюлоза, основной структурный компонент растений, представляет собой сложный полисахарид, состоящий из множества связанных между собой единиц глюкозы; это наиболее распространенный полисахарид. Крахмал, содержащийся в растениях, и гликоген, содержащийся в животных, также представляют собой сложные полисахариды глюкозы. Крахмал (от древнеанглийского слова stercan , что означает «застывать») в основном содержится в семенах, корнях и стеблях, где он хранится в качестве доступного источника энергии для растений. Растительный крахмал может быть переработан в такие продукты, как хлеб, или может потребляться напрямую — например, в картофеле.Гликоген, состоящий из разветвленных цепочек молекул глюкозы, образуется в печени и мышцах высших животных и хранится в качестве источника энергии.

    Состав целлюлозы и глюкозы Целлюлоза и глюкоза являются примерами углеводов. Encyclopædia Britannica, Inc.

    Окончание общей номенклатуры моносахаридов — -оза ; таким образом, термин пентоза ( pent = пять) используется для моносахаридов, содержащих пять атомов углерода, а гексоза, ( hex, = шесть) используется для тех, которые содержат шесть.Кроме того, поскольку моносахариды содержат химически реактивную группу, которая является либо альдегидной группой, либо кетогруппой, их часто называют альдопентозами, или кетопентозами, или альдогексозами, или кетогексозами. Альдегидная группа может находиться в положении 1 альдопентозы, а кетогруппа может находиться в дополнительном положении (например, 2) внутри кетогексозы. Глюкоза представляет собой альдогексозу, то есть она содержит шесть атомов углерода, а химически реактивная группа представляет собой альдегидную группу.

    .

    углеводов | Базовая биология

    Что вы узнаете на этой странице

    • Что такое углевод
    • Почему углеводы важны
    • Структура углеводов
    • Различия между моносахаридами, дисахаридами и полисахаридами
    • Примеры важных углеводов

    Углеводы — одна из четырех основных категорий молекул, обнаруженных в живых существах, три других — это белки, липиды и нуклеиновые кислоты.Они жизненно важны для жизни на Земле и выполняют ряд функций, таких как обеспечение энергией, структурной поддержкой и сотовой связью.

    Углеводы — это сахар или полимер сахаров. Полимер — это два или более простых сахара, соединенных вместе. Углеводы — это молекулы на основе углерода, в которых водород и кислород связаны с цепочкой атомов углерода.

    Простой сахар известен как моносахарид. Моносахариды могут связываться вместе с образованием дисахаридов и полисахаридов. Это три разных типа углеводов, и все они важны для разных целей в естественном мире.

    Почему углеводы важны?

    Вся жизнь на Земле требует углеводов. Они проникли в жизнь не только животных и растений, но и грибов, бактерий, архей и простейших.

    Самая важная роль углеводов — это источник энергии. Химическая энергия сахаров является основным источником энергии для большинства живых существ.

    Растения используют энергию солнца и CO₂ для производства углеводов. Эти углеводы составляют основу почти всех экосистем на Земле.

    Использование углеводов для получения энергии предотвращает использование белков для получения энергии. Это важно, потому что позволяет использовать белки для других целей, таких как метаболизм и сокращение мышц.

    Некоторые из более сложных углеводов обеспечивают структурную поддержку и защиту. Клетки растений и грибов имеют клеточные стенки, состоящие из углеводов. Эти клеточные стенки обеспечивают защиту и поддержку клетки и всего организма.

    Углеводы также участвуют в распознавании клеток.Клетки содержат углеводы на внешней поверхности клеточных мембран, которые действуют как рецепторы. Рецепторы могут взаимодействовать с углеводами на мембранах других клеток и помогать клеткам идентифицировать друг друга.

    Структура углеводов

    Химическая структура и состав углеводов относительно просты по сравнению с белками и липидами. Большинство углеводов полностью состоят из атомов углерода, водорода и кислорода. Углевод имеет три или более атомов углерода, по крайней мере, два атома кислорода и несколько атомов водорода.Некоторые углеводы также содержат атомы азота, например хитин, который содержится в панцирях насекомых.

    Атомы углерода обладают способностью связываться с четырьмя другими атомами. В углеводах атомы углерода образуют линейную цепь, связываясь с двумя другими атомами углерода. Цепочка заканчивается, когда углерод использует три свои связи с кислородом и водородом, а не с двумя атомами углерода.

    Атомы кислорода углеводов могут быть связаны с углеродом двойными или одинарными связями. Если кислород образует двойную связь с атомом углерода (C = O) вдоль углеродной цепи, это известно как карбонильная группа.

    Кислород может быть связан с углеродной цепью в гидроксильной группе (атом кислорода, связанный с атомом водорода -ОН) с одинарной связью с атомом углерода углеродной цепи. Углевод может содержать более одной гидроксильной группы.

    Атомы водорода занимают большую часть оставшихся углеродных связей. Обычно в углеводе примерно в два раза больше атомов водорода, чем атомов кислорода.

    На самом деле углеводы не всегда образуют линейные цепи, а часто располагаются в виде колец.Это происходит потому, что двойная связь между углеродом и кислородом карбонильной группы восстанавливается до одинарной связи, а кислород вместо этого связывается с другим атомом углерода вдоль цепи. Это создает кольцо, содержащее несколько атомов углерода и один атом кислорода.

    Моносахариды — простые сахара

    Моносахариды — это самые основные углеводы, обычно известные как простые сахара. Они включают хорошо известные сахара, такие как глюкоза и фруктоза. Моносахарид включает все необходимые компоненты углевода i.е. углеродная цепь, карбонильная группа и гидроксильная группа.

    Моносахариды являются строительными блоками для больших углеводов, а также используются в клетках для производства белков и липидов. Сахара, которые не используются для получения энергии, часто хранятся в виде липидов или более сложных углеводов.

    Это моносахариды, которые в основном используются клетками для получения энергии. Глюкоза, возможно, является самым важным моносахаридом, потому что она используется при дыхании для обеспечения клеток энергией. Энергия, хранящаяся в связях молекулы глюкозы, преобразуется серией реакций в энергию, используемую клетками.

    Дисахариды

    Дисахарид — это углевод, состоящий из двух моносахаридов, соединенных вместе. Они по-прежнему считаются сахарами, но уже не являются простыми сахарами.

    Моносахариды связываются вместе в так называемой реакции дегидратации, потому что молекула воды удаляется, когда два сахара связываются вместе. Реакция происходит между двумя гидроксильными группами (-ОН) двух моносахаридов.

    Гидроксильная группа полностью удаляется из одного моносахарида, а из второго моносахарида удаляется атом водорода из гидроксильной группы.Удаленная гидроксильная группа и водород образуют молекулу воды, то есть OH + H → H₂O

    Из второго моносахарида все еще остается кислород из гидроксильной группы. Этот кислород связывается с атомом углерода, из которого была удалена гидроксильная группа на первом моносахариде. Связь связывает два моносахарида вместе, образуя дисахарид.

    Самый известный дисахарид — это сахароза, которую мы используем дома в качестве сахара из-за ее сладости. Сахароза состоит из одной молекулы фруктозы и одной глюкозы.

    глюкоза + фруктоза = сахароза

    Другой известный дисахарид — это лактоза, сахар, содержащийся в молочных продуктах. Лактоза состоит из одной молекулы глюкозы и одной молекулы галактозы.

    Люди нередко испытывают трудности с расщеплением лактозы на глюкозу и галактозу после употребления молочных продуктов. Это причина состояния здоровья, известного как непереносимость лактозы, которая может вызвать диарею, вздутие живота, газы и рвоту.

    Названия моносахаридных и дисахаридных углеводов заканчиваются суффиксом -оза.Например, фруктоза, глюкоза, галактоза, сахароза и лактоза.

    Полисахариды

    Полисахарид — это три или более моносахаридов, соединенных вместе. Точно так же, как образуется дисахарид, полисахариды образуются в результате множественных реакций дегидратации между углеводами.

    Отдельный моносахарид в полисахариде называется мономером. Полисахарид, состоящий из множества мономеров, можно назвать полимером. Некоторые полимеры имеют длину более 1000 мономеров (или моносахаридов).

    мономер = моносахарид; полимер = полисахарид

    мономер + мономер + мономер = полимер

    Полисахариды обладают рядом биологических функций. Ключевая функция, которую они выполняют, — это временное хранение энергии. Растения хранят энергию в форме полисахарида, известного как «крахмал». Многие культуры, такие как кукуруза, рис и картофель, важны из-за высокого содержания крахмала. Люди и другие животные накапливают энергию в наших мышцах и печени с помощью полисахарида, известного как «гликоген».

    Вторая важная роль полисахаридов — обеспечение структурной поддержки. У растений есть два очень важных структурных полисахарида: целлюлоза и лигнин.

    Целлюлоза — ключевое соединение, составляющее клеточные стенки растительных клеток. Клеточные стенки отвечают за защиту и поддержание формы растительных клеток. Лигнин — структурное соединение, из которого образуется древесина, благодаря которому растения превращаются в гигантские деревья.

    Животные и грибы также используют полисахариды в качестве конструкционных материалов.Хитин — это полисахарид, который содержится в экзоскелетах насекомых, пауков и ракообразных, а также в клеточных стенках грибов.


    Резюме

    • Углеводы — одна из четырех основных молекул жизни
    • Углеводы — это молекулы, состоящие из атомов углерода, водорода и кислорода и включающие карбонильную группу (C = O) и гидроксильную группу (-OH)
    • Углеводы являются основным источником энергии для большинства организмов, а также важны как структурные соединения и распознавание клеток-клеток.
    • Три типа углеводов — моносахариды, дисахариды и полисахариды.
    • Моносахариды — простые сахара e.грамм. глюкоза и фруктоза
    • Дисахариды образуются путем соединения двух моносахаридов вместе
    • Полисахариды содержат три или более моносахаридов и также известны как полимеры
    • Полисахариды важны для хранения энергии и обеспечения поддержки и защиты клеток и целых организмов

    Последняя редакция: 23 апреля 2016 г.

    БЕСПЛАТНЫЙ 6-недельный курс

    Введите свои данные, чтобы получить доступ к нашему БЕСПЛАТНО 6-недельному вводному курсу электронной почты по биологии.

    Узнайте о животных, растениях, эволюции, древе жизни, экологии, клетках, генетике, областях биологии и многом другом.

    Успех! На указанный вами адрес электронной почты было отправлено письмо с подтверждением. Проверьте свою электронную почту и убедитесь, что вы нажали ссылку, чтобы начать наш 6-недельный курс.

    .

    Источники углеводов — типы, источники и их функции

      • Классы
        • Класс 1–3
        • Класс 4–5
        • Класс 6–10
        • Класс 11–12
      • КОНКУРЕНТНЫЙ ЭКЗАМЕН
        • BNAT 000 NC
          • 000 NC Книги
            • Книги NCERT для класса 5
            • Книги NCERT для класса 6
            • Книги NCERT для класса 7
            • Книги NCERT для класса 8
            • Книги NCERT для класса 9
            • Книги NCERT для класса 10
            • Книги NCERT для класса 11
            • Книги NCERT для класса 12
          • NCERT Exemplar
            • NCERT Exemplar Class 8
            • NCERT Exemplar Class 9
            • NCERT Exemplar Class 10
            • NCERT Exemplar Class 11
            • NCERT 9000 9000
            • NCERT Exemplar Class
              • Решения RS Aggarwal, класс 12
              • Решения RS Aggarwal, класс 11
              • Решения RS Aggarwal, класс 10
              • 90 003 Решения RS Aggarwal класса 9
              • Решения RS Aggarwal класса 8
              • Решения RS Aggarwal класса 7
              • Решения RS Aggarwal класса 6
            • Решения RD Sharma
              • RD Sharma Class 6 Решения
              • Решения RD Sharma
              • Решения RD Sharma класса 8
              • Решения RD Sharma класса 9
              • Решения RD Sharma класса 10
              • Решения RD Sharma класса 11
              • Решения RD Sharma класса 12
            • PHYSICS
              • Механика
              • Оптика
              • Термодинамика Электромагнетизм
            • ХИМИЯ
              • Органическая химия
              • Неорганическая химия
              • Периодическая таблица
            • MATHS
              • Теорема Пифагора
              • 000300030004
              • 9000
              • Простые числа
              • Взаимосвязи и функции
              • Последовательности и серии
              • Таблицы умножения
              • Детерминанты и матрицы
              • Прибыль и убыток
              • Полиномиальные уравнения
              • Разделение фракций
            • 000
            • 000
            • 000
            • 000
            • 000
            • 000 Microology
            • 000
            • 000 BIOG3000
            • 000 Microology
            • 000 FORMULAS
              • Математические формулы
              • Алгебраические формулы
              • Тригонометрические формулы
              • Геометрические формулы
            • КАЛЬКУЛЯТОРЫ
              • Математические калькуляторы
              • 0003000 PBS4000
              • 00030003000300030002 Примеры 9BS40006 для физики
              • 000 P
                • Класс 6
                • Образцы документов CBSE для класса 7
                • Образцы документов CBSE для класса 8
                • Образцы документов CBSE для класса 9
                • Образцы документов CBSE для класса 10
                • Образцы документов CBSE для класса 11
                • Образцы документов CBSE чел для класса 12
              • CBSE Контрольный документ за предыдущий год
                • CBSE Контрольный документ за предыдущий год Класс 10
                • Контрольный документ за предыдущий год CBSE, класс 12
              • HC Verma Solutions
                • HC Verma Solutions Class 11 Physics
                • Решения HC Verma, класс 12, физика
              • Решения Лакмира Сингха
                • Решения Лакмира Сингха, класс 9
                • Решения Лакмира Сингха, класс 10
                • Решения Лакмира Сингха, класс 8
              • Заметки CBSE
                • CBSE Notes
                    Примечания CBSE класса 7
                  • Примечания CBSE класса 8
                  • Примечания CBSE класса 9
                  • Примечания CBSE класса 10
                  • Примечания CBSE класса 11
                  • Примечания CBSE класса 12
                • Примечания к редакции CBSE
                  • Примечания к версии
                  • CBSE
                  • Примечания к редакции класса 10 CBSE
                  • Примечания к редакции класса 11 CBSE 9000 4
                  • Примечания к редакции класса 12 CBSE
                • Дополнительные вопросы CBSE
                  • Дополнительные вопросы по математике класса 8 CBSE
                  • Дополнительные вопросы по науке 8 класса CBSE
                  • Дополнительные вопросы по математике класса 9 CBSE
                  • Дополнительные вопросы по науке класса 9 CBSE
                  • Дополнительные вопросы по математике для класса 10
                  • CBSE, класс 10 по науке, дополнительные вопросы
                • CBSE, класс
                  • , класс 3
                  • , класс 4
                  • , класс 5
                  • , класс 6
                  • , класс 7
                  • , класс 8
                  • , класс 9 Класс 10
                  • Класс 11
                  • Класс 12
                • Учебные решения
              • Решения NCERT
                • Решения NCERT для класса 11
                  • Решения NCERT для класса 11 по физике
                  • Решения NCERT для класса 11 Химия
                  • Решения для биологии класса 11
                  • Решения NCERT для математики класса 11
                  • 9 0003 NCERT Solutions Class 11 Accountancy
                  • NCERT Solutions Class 11 Business Studies
                  • NCERT Solutions Class 11 Economics
                  • NCERT Solutions Class 11 Statistics
                  • NCERT Solutions Class 11 Commerce
                • NCERT Solutions For Class 12
                  • NCERT Solutions For Класс 12 по физике
                  • Решения NCERT для химии 12 класса
                  • Решения NCERT для класса 12 по биологии
                  • Решения NCERT для класса 12 по математике
                  • Решения NCERT Бухгалтерский учет 12 класса
                  • Решения NCERT Класс 12 Бизнес-исследования
                  • Решения NCERT, класс 12 Экономика
                  • NCERT Solutions Class 12 Accountancy Part 1
                  • NCERT Solutions Class 12 Accountancy Part 2
                  • NCERT Solutions Class 12 Micro-Economics
                  • NCERT Solutions Class 12 Commerce
                  • NCERT Solutions Class 12 Macro-Economics
                • NCERT Solutions For Класс 4
                  • Решения NCERT для математики класса 4
                  • Решения NCERT для класса 4 EVS
                • Решения NCERT для класса 5
                  • Решения NCERT для математики класса 5
                  • Решения NCERT для класса 5 EVS
                • Решения NCERT для класса 6
                  • Решения NCERT для математики класса 6
                  • Решения NCERT для науки класса 6
                  • Решения NCERT для класса 6 Социальные науки
                  • Решения NCERT для класса 6 Английский
                • Решения NCERT для класса 7
                  • Решения NCERT для класса 7 Математика
                  • Решения NCERT для класса 7 Наука
                  • Решения NCERT для класса 7 по социальным наукам
                  • Решения NCERT для класса 7 Английский
                • Решения NCERT для класса 8
                  • Решения NCERT для класса 8 Математика
                  • Решения NCERT для класса 8 Science
                  • Решения NCERT для социальных наук 8 класса
                  • Решение NCERT ns для класса 8 Английский
                • Решения NCERT для класса 9
                  • Решения NCERT для социальных наук класса 9
                • Решения NCERT для математики класса 9
                  • Решения NCERT для математики класса 9 Глава 1
                  • Решения NCERT для Математика класса 9 Глава 2
                  • Решения NCERT для математики класса 9 Глава 3
                  • Решения NCERT для математики класса 9 Глава 4
                  • Решения NCERT
                  • для математики класса 9 Глава 5
                  • Решения NCERT для математики класса 9 Глава 6
                  • Решения NCERT для Математика класса 9 Глава 7
                  • Решения NCERT для математики класса 9 Глава 8
                  • Решения NCERT
                  • для математики класса 9 Глава 9
                  • Решения NCERT
                  • для математики класса 9 Глава 10
                  • Решения NCERT для математики класса 9 Глава 11
                  • Решения NCERT для Математика класса 9 Глава 12
                  • Решения NCERT для математики класса 9 Глава 13
                  • Решения
                  • NCERT для математики класса 9 Глава 14
                  • Решения NCERT для математики класса 9 Глава 15
                • Решения NCERT для науки класса 9
                  • Решения NCERT для науки класса 9 Глава 1
                  • Решения NCERT для науки класса 9 Глава 2
                  • Решения NCERT для класса 9 Наука Глава 3
                  • Решения NCERT для Науки Класса 9 Глава 4
                  • Решения NCERT для Науки Класса 9 Глава 5
                  • Решения NCERT для Науки Класса 9 Глава 6
                  • Решения NCERT для Науки Класса 9 Глава 7
                  • Решения NCERT для Класса 9 Наука Глава 8
                  • Решения NCERT для Науки Класса 9 Глава 9
                  • Решения NCERT для Науки Класса 9 Глава 10
                  • Решения NCERT для Науки Класса 9 Глава 12
                  • Решения NCERT для Науки Класса 9 Глава 11
                  • Решения NCERT для Класса 9 Наука Глава 13
                  • Решения NCERT для класса 9 Наука Глава 14
                  • Решения NCERT для класса 9 по науке Глава 15
                • Решения NCERT для класса 10
                  • Решения NCERT для класса 10 по социальным наукам
                • Решения NCERT для математики класса 10
                  • Решения NCERT для математики класса 10 Глава 1
                  • Решения NCERT для математики класса 10 Глава 2
                  • Решения NCERT для математики класса 10 Глава 3
                  • Решения NCERT для математики класса 10 Глава 4
                  • Решения NCERT для математики класса 10 Глава 5
                  • Решения NCERT для математики класса 10 Глава 6
          .
          0 0 vote
          Article Rating
    0
    Would love your thoughts, please comment.x
    ()
    x